US011360750B1

a2 United States Patent

Corvi et al.

US 11,360,750 B1
Jun. 14, 2022

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR
CONVERTING A LEGACY CODE INTO AN
UPDATED CODE

Applicant: Sony Interactive Entertainment LLC,
San Mateo, CA (US)

(71)

(72) Inventors: Ernesto Corvi, San Mateo, CA (US);
George Weising, Culver City, CA (US);
David Thach, San Mateo, CA (US)
(73)

Assignee: Sony Interactive Entertainment LLC,

San Mateo, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 17/161,583

(22) Filed: Jan. 28, 2021

Related U.S. Application Data

Provisional application No. 63/130,241, filed on Dec.
23, 2020.

(60)

Int. C1.

GO6F 8/41
GO6F 12/0802
U.S. CL

CPC ...

(51)
(2018.01)
(2016.01)
(52)
GOGF 8/41 (2013.01); GOGF 12/0802

(2013.01); GO6F 2212/60 (2013.01)

(58) Field of Classification Search
CPC i GOG6F 8/41
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,620,795 B1* 11/2009 Ryserc..... GOGF 9/3861
712/9

7,865,784 B1* 1/2011 White G11B 20/10527
714/53

2006/0046824 Al* 3/2006 Silvacccoconnne GOGF 9/455
463/16

2010/0199229 Al* 82010 Kipman ... GO6K 9/00201
715/863

2016/0350089 Al* 12/2016 GuoOccoovviinnens GOGF 8/4441

* cited by examiner

Primary Examiner — Jae U Jeon
(74) Attorney, Agent, or Firm — Penilla IP, APC

(57) ABSTRACT

A method for facilitating a play of a legacy game is
described. The method includes receiving a user input
during the play of the legacy game, determining whether one
or more blocks of code for servicing the user input are
cached, and accessing one or more instructions of a legacy
game code upon determining that the one or more blocks of
code are not cached. The method further includes compiling
the one or more blocks of code from the one or more
instructions of the legacy game code, caching the one or
more blocks of code, and executing the one or more blocks
of code to display a virtual environment.

20 Claims, 27 Drawing Sheets

850
Is /
basic black ‘ No
cached
852
Create a 1=t hash from instructions of
/ emulated CPU code in memory addresses
854 accessed to compile the basic block
Are
the instructions at
the memory addresses
overwritten
?
856
Mark the basic | ~860 Do not mark the basic | 858
block invalid? block invalid
To Fig. 8C To Fig. 8C

US 11,360,750 B1

Sheet 1 of 27

Jun. 14, 2022

U.S. Patent

U %00|g oiseq

(1-u) yoo0|g dIseg

¢ 190Ig dised

| Yo0ig OIseq

(19322d193u] ¥20I9)
| 'Ol

001

voL (epo9 Ateuiq _m.&

t
’
4
’
]
1]

/ Jojesuas) mMM_Q
]
\ j1eydwiod) yo0|g diseq pajenw3
9p0) NdO Koeha

US 11,360,750 B1

Sheet 2 of 27

Jun. 14, 2022

U.S. Patent

(swnuny)

¢ Ol

Y

%90|q %90|q
Jxou < Jxauay)
ay} ayoen ajelauab/a|dwon
802 902 ﬁ
ON

c0¢

%20|q 1xau
Ay yojedsi

payoed

100[q
1Xau S|

€«——— SIA

y0¢

00Z \\

U.S. Patent Jun. 14, 2022 Sheet 3 of 27 US 11,360,750 B1

/ 300

Decodes a group of emulated PU opcodes and
Basic Block translates them into optimized intermediate
Compiler/Generator representation for host PU. Count cycles for the

block.

102

/ Holds compiled basic blocks for fast lookup. Handles
cache invalidation from emulated PU, DMA or self-
modifying code. Marks invalid blocks for self-verification
through block hash.

Cache

302

Executes basic block intermediate representation.
Block Dispatcher Updates emulated cycles based on block’s cycle
count.

FIG. 3

(Components)

US 11,360,750 B1

Sheet 4 of 27

Jun. 14, 2022

U.S. Patent

ayoen

©

Jajidwon
%o0ig

»i
Y

M
201

aiseg

(ajosuo9 awes) 03 No6 peojumoq)

i:v

WBISAS J0SS3201 UoNe NI

607 S

44 w.w\.‘ﬁ@\a

N [

I

9

€9

ADIE ‘\gq
707 9]0SU07) awes) A%we vy
991A3Q <
Koowap | hed 5 8Ly Aﬂ
147
< NoB i YIOM)ON S
N Jsndwoy
v P07 wosAg Joniag
90y \#
8Ly
~
oLy
cly—]
19
aulyoepy Loeban

US 11,360,750 B1

Sheet 5 of 27

Jun. 14, 2022

U.S. Patent

(sawea4 abewy Aejdsiq)
N P
1l Jesn
v, wum Hez
- yIomjeN
«/ - Jeindwon
957~} [] HENA\ N e
«—<_—0tY
— F0¥ WalsAg Jonle
NOO S 607 WalsAg J0ssa00.d VOy LSS S

AR UoReInuI3

—] _
m u v_eo_m_oo_wmm_ m NS//
] . “ 01
! . i /ﬂ 3919 Kowsapy
“ |
i | zoigoseg !
m | < Jaidwion yooig aiseg | [€ Nob
[1ooigoseg |
B —— “

US 11,360,750 B1

Sheet 6 of 27

Jun. 14, 2022

U.S. Patent

-

9Yoe9 0} pokoy u ssaippe pug -~~~ U $8j949 JO "ON
u uonesadp

(sy20q dIsegq) U SsaIppy Ja)sibay uoneunsa(q

<m . w_m U SSalppy Jaysibay 89In0g

U SHe pifeAul

-

ayoed 0) pakay U ssaippe Leyg -~ u yo0|g oisegq
U 390|q AJLISA 0} 8J8Y PaLaSUI U %90|q 3OOH \

-

Z ssaippe pug -~ Z $91949 40 "ON
Z uonesadp
Z ssaIppy Jaisibay uoneunsa(
Z Ssalppe el /r Z ssaIppy Jaisibay 991n0g
U080 0) pakaY | SS8Ippe pug ~ ¢ ¥20ig diseq

~
~
~
~

| $8]942 JO "ON

uinal ‘epialp ‘Ajldynw 9oengns
(uinjeu “apinip “Ajdpnwi 1029 | =7 vopesedo

‘ppe ‘asedwod ‘sjum ‘peos ‘youelq ‘dwnp “69) - ———~
| Ssaippy Jajsibay uoneunsaq

| SSaIppy Jasibay 821008

9yoed 0} pakay | ssaippe Ueyg ===~ | y90]g diseq

|
%001q
$9S0[9)

US 11,360,750 B1

Sheet 7 of 27

Jun. 14, 2022

U.S. Patent

pasn
10U S}Iq Ysew

B SHA B YUS

~
~
~

SHq A
s)q @ “u uoesadp

’
’
{

| -ussaippy Jeisibay uoneunsa(q

. U'ssalppy Jajsifoy 92In0g

ﬂ_nuu ujo0jg Jiseg

g¢ Old

<+—— 9dwo) «—

4+
shqq -

Sige--

055 SIVEN

.x ,

1
1
H
)
]
1
[}

\|\ uonesadp

--- |\ SS®Ippy uojeunssd

I\ SS2IpPY 991N0S

W uondonAsu
9P0] Nd Pejenwy

US 11,360,750 B1

Sheet 8§ of 27

Jun. 14, 2022

U.S. Patent

V9 Ol

607

WioYSAS 10SS89014 Uonenwg

¢01 ®y2ed

u %00|g oiseg

| 100|g
aiseq

3] Jsydedsig

A

NO9

¥o0|g [-20¢
809
)
(¥0T1 Jopdwon yooig o1seg
Japeay
X00[g
209 /
909 09
Jayoe) e jojealn) e Iopodaq/iesied [€
%%0ig %00|g €~ |
A
| Induj Jasn

-

I\ uononsu|
8po)d
Nd
pajejnw3

Z uononysuj
9p0)
Nd
pojenw3

| uononJsuj
3po0
Nd
pejeinwi

Nob

U.S. Patent

650 J

Jun. 14, 2022 Sheet 9 of 27 US 11,360,750 B1

652

-
P

User
input
received
?

e block & do not
identify an instruction

654 _
By Block Dispatcher-.

Isa
basic block(s)

to service the user input Run the basic block(s)
cached
By Block Creator 656

658 | Identify an instruction from an
emulated PU code to service [._.By Parser
the user input

660

\ Compile

the instruction(s) to By Block Creator
generate a basic block(s)

662 l

Run the basic block(s)

“--By Block Dispatcher

FIG. 6B

(Method for Dynamically
Compiling Basic Block(s))

US 11,360,750 B1

Sheet 10 of 27

Jun. 14, 2022

U.S. Patent

(=

F ayoe)

2 }00|g diseg

i

(s)no0ig o1seq

alIdwo) @

| ¥20|g d1Seg

.
)

payoed sl | S%L_ Josn |
0} Buipuodsalioo ¥20|q 21Seq JI Y98Y9 @

c0¢

Jayajedsig
190Ig

A

®
®

Z induj Jasn

O

®

Jajdwon
100|g dised

J9 Old

71 291n8Qq Alowsy

01 9p0J Nd pejeinwiy

Z uononnsu
apo)

A

Nnd
pajenw3

A

0

L Induj Jasn

0.9 \

1412

@ ©

| uononysu|
9p0)

Nd
pajenw3

U.S. Patent Jun. 14, 2022 Sheet 11 of 27 US 11,360,750 B1

/ 700

e D
r)

Emulated PU Code
Instruction 1

Block Instructions

Creator Remover Emulated PU Code
Instruction 2

)) :

604 702 .

Emulated PU Code
Instruction M

FIG. 7A

Emulated PU code 106

Memory Device 412

122 720
s

No

Are
all
instructions of
emulated PU code
compiled
?

Retain the emulated 126
PU code

Yes

v

T24~_] Delete the emulated PU

wore FIG. 7B

US 11,360,750 B1

Sheet 12 of 27

Jun. 14, 2022

U.S. Patent

(uongepijep)

V8 Old

08

[4

O

| 9Y%eD

u 00|19

Jobbel4
P0lg

208

m

aiseg

08 WoysAS 10SS8001d UOHR|NWT

¢ 90l

0}epleA
A0lg

aiseq

g | X001
oiseg

NMm
Jayojedsig
20019
P07 Jo)dwo) ¥ooig aiseq
909 709
<09
w | ~
Jayoen Jjojealn) Jap0oe(
¥ooig ¥o0|19 J1esied

U.S. Patent Jun. 14,2022 Sheet 13 of 27

Is
a
basic black

cached
?

No

852

Create a 1st hash from instructions of
/ emulated CPU code in memory addresses
854 accessed to compile the basic block

Are
the instructions at
the memory addresses

overwritten
?
856

' y

US 11,360,750 B1

/- 850

Mark the basic
block invalid?

l

To Fig. 8C

FIG. 8B

Do not mark the basic
block invalid

Ve 858

l

To Fig. 8C

U.S. Patent

To ngg, 8B

Jun. 14, 2022

Sheet 14 of 27

US 11,360,750 B1

To Fig. 8B

862

Is ‘

* the basic block
iobe

axsouisd

Is
the basic
biock marked
o invalid?

No

868

. -Hash the instructions again &
!

compare w, the 18thash

866

Is Execuie the
the basic basic
block valid block
?
870 =
. Remove
No Yag N e
mark
879] Recompile the basic -§-~.- -+ From another set of

block

FIG. 8C

memory addressss

US 11,360,750 B1

Sheet 15 of 27

Jun. 14, 2022

U.S. Patent

(W1SSd ‘witSd “09)

86 Old

(VNG o smojle ‘aSS “6°9)---.

(n2Sd ‘wilSd “69) -

V6 Ol

.- auyoey pajepdn
0€6
............ WwaysAS NdO
Aiowsp $S920y Z
/] 9Uoe9 $9559998 15| -
926 g L
-~ 44
ya
Yoedl P
Va ayoe) < > * _ NdO
826 4 -
9oB) $8559098 15|, -~
J--- auiyoeyy Loeba
706
apoo ya
006 /] 901 Nd paje|nw3 Ndo
$$900Y _) Aoebo
991A9(81
Yoo ON faowapy
| $S200Y Vs 206
= 15)
90—
H ndo
Aoebo
aAUQ Woy-a)
806—" |

US 11,360,750 B1

Sheet 16 of 27

Jun. 14, 2022

U.S. Patent

Jajdwo yooig Ag -~~~

(pajeabajuj uononssu)
aweg 10j $Y20|q d1seq)

VoL Ol

¢ Indur Jasn

| %901q d1Seq

1

| %9019 9I1SEq

OJUI Z puB |, $3j00]q Iseq ajelbaju|

f

¢ lensje e |0

UOIJBIUSLIO Y} pue | d

uonisod 8y} Je sajeniul
190[q0 jenuiA 69 -~

| [9As| B e LD

uonejusLo ue g |4

uonisod e 1e sajenul
100[q0 [enuIA 69 --~

Z Indur Jasn

z 1one -,

\
\
~

¢ 00ig dI1seg

B

L UONBIUSLIO UE pue |4 uomyisod e Je .
10900 [enYIA SJeniul 0} UORONIISUI SRS -—-==2]

| Indut Jasn

¢
uononLsu|
3P0 Nd
psjenw3

-

~

\

| %00/ diseq

NEIC BN

I'

————»

|
uonanAsu|
9po0 Nd
pajeinuiy

US 11,360,750 B1

Sheet 17 of 27

Jun. 14, 2022

U.S. Patent

(¥90]q diseq Jo uonesyipop)

g0l Old

\ 0c01

T nduj
UonedyIPo
¥20 F\
\ 4
Jayojedsiq yooig d0BLIAJU| X20|g
208" 201"
20} 9yoed
\ 4 \ 4
u yo0|g oiseg U 001G o152g
PSUIPON [
(usauos Ae|dsip j0 abpa WOl YoBq $92UNOQ JIrY-SS0.19 ‘Bulu0N0al pesp “69) -

US 11,360,750 B1

Sheet 18 of 27

Jun. 14, 2022

U.S. Patent

(sunnoigng diys)
201 9I4
020
(7 onay 12 30310 V\ F

[ENMIA JO UOONASAP 7
s1obbiy “6-9) — nduj Jesn | 300|g diseg
Z uononsu| apon
(1 uonejuauio g | uonisod Je pajealdal s1399fqo [enpin “69) ---~. Nd pajenui3
Z |
300|g N augnoigng
aiseq

(1 193] 38 830800 [enpiA Jo
uononnsap siabbLy “68) -

(pekonsap s1399(qo [enyin “6°9) -

mm————

| |
| Induj Jasn 300(g —> uononasuy|
Jised 9P0J Nd pajenwz

US 11,360,750 B1

Sheet 19 of 27

Jun. 14, 2022

U.S. Patent

PIO -~

payasy|-.._

(salissiw yym o[J8pyby e Jo pesysul
pasn aq ues unb Jase| e yyum jof
J2)yb1} B ya1ym Je [9As) e yoojun “69)

(uonuasu| yooig)

aot oid

[4

O

} @yoed

¢ 00|g d1seq

1"} 0019 dI1Seg

\32

| yooig oiseg |

Indu| uoneayipoly
\-zv01
y
SOBLBII OIS [N_70,
A 4
| %o0|g diseq

US 11,360,750 B1

Sheet 20 of 27

Jun. 14, 2022

U.S. Patent

0501

(uonnaaxg Jo JapiQ YouMmg)

Indu| uoneayipoly
501" |

908 LIaU| ¥20Ig
44\ F\

301 'Ol

Y

A 4
201 3Ye)
| 300Ig 2Iseq 2400/ 9iseg
uonN9aXa Jo JapI0 % A”_ UORNIDXD JO _mEOﬁ
2 400/g oIseq | %001 9iseq

U.S. Patent Jun. 14, 2022 Sheet 21 of 27 US 11,360,750 B1

662
Run a basic block 4

l

Count a number of cycles of execution of /1102
the basic block

l

Store the number of cycles in 104
the basic block

same basic block

to be executed again
?

To Fig. 11B

FIG. 11A

U.S. Patent Jun. 14, 2022 Sheet 22 of 27 US 11,360,750 B1

To Fig. 11A

Did
the basic block
finish execution within a pre-
determined limit
from the
no. of cycles?

l l

Do not trigger a notice Trigger a notice
1112 1110

FIG. 11B

US 11,360,750 B1

Sheet 23 of 27

Jun. 14, 2022

U.S. Patent

(93189 Jual) JaYouy
0} sy20]g d1skq Jo Jajsuel])

vov
wajsAs
JanIag

¢l Ol

» A 9021
01ZI— 9N < /
20Z1—1 | Waskg 12%4}
105589014
» v
N oU%eY m) uonenwg
0zz) s0z1— 8izh 9]0Su0) awes Tﬂl
) (
[zariesn] veel
senbal UD oo
: ﬁQU@ Y02} —— _||_
9 EO 1O
201 ay9eD Z0F 9|0SU0D) aWe:)
Y1oMjaN e i T
Joyndwon m NOD !
] ® !
! . “ 60¥ 601
[uyooig oiseg m / //
i
i L}
I ' Wa)SAS apo)
@ m ¢ 018 Ired m 10859001 | Nd
| ! uone|nw3 palenwWa
| 1 opoigoseg |1
R —— “ 0
@2 oN [Saa
+

ZJasn

ciel mw

| Josq

:

US 11,360,750 B1

Sheet 24 of 27

Jun. 14, 2022

U.S. Patent

¢l Ol

ETR _ YIomjaN _ J8)ua) eleq
0cel c0¢l
4 {
129 129
|Ev {0 Elv (0d
9p¢ 10 ‘ySd ‘€Sd)

AIE

el

(D

A

0ccl

—{ oepiA]

— opny |
8cel

Japuay/epods(

{
et

paydAious sieeq

<] o_ﬁw._mz “
¥egl

<t 0P |
81El

<« opny |

y 4

\Y

pajdAious si eleq

AIE

aeel

Jansag buiwes

!

—_OspiA_}
S}ob0Bd YJOMBN 9L€lL S}94oed YOMISN D 4 a
9p029(/ep0ou] odsuel 9p039(/eP0dUT | oipny
HodsueIL Scw
apoou3/ainyde)
esel <
el (o050 1 80t
Jojuop
< S <
9z¢l 0G€L viglL

D

7] .

90¢L YOS

US 11,360,750 B1

Sheet 25 of 27

Jun. 14, 2022

U.S. Patent

™ ghyl
W~ = eg/mv [T1
o 3 A 4
i - 4303 [0
m oy —T NOSTE A 0 1 gy Qdv - gip)
“ _ - —~ _ asn AV
!)
1 { h
| 2l “
o wn—| 390M80i H_mzmmEm
| \ / ! \
! _ 0l
il i M
= XSY H0SSI0Nd T130 YHaX 7
0zr) !
[z _ / /
5 iy, OEL 92 HL00L3N18
2l m [/N
i 817 “
g.ﬂv T\ =

US 11,360,750 B1

Sheet 26 of 27

Jun. 14, 2022

U.S. Patent

205"

- asn 20005080 N0,
SHOSNIS0I9 ao| R EIETO =V SN
ws1—"1
NOILYOINIAIO)
oL INOSWILTN 9251 —"] G SALINOLNOW ™ g1
SHOSES NOILO3L3
wo] N N I ==TE TR NOILOW J18¥140d o
NI
95k~ NOILYIINNIWKOD as— 3NOHOZIIN A3L1ve 905
-~ SYIIYIdS AYIdSIa ~ 105
wo—-| HLOOLINTE an| YO HLE0 ASONIN ~ 7,
4 P SNETNA H0S53008d R VIS
A 0151
el 0 qanon-ava

US 11,360,750 B1

Sheet 27 of 27

Jun. 14, 2022

U.S. Patent

{

9l 'Ol

\)/l\

d3QIAOYd FOIAY3S NOILYINHOANI

2091 —"1

MIOMLIN
909L—"]
- AY1dSIa d)
_
£-029L—" 0
- AY1dSIa Ad)
29 —1— 0!
- AY1dSIa nd)
10291 —" ol

8191

209"

JONYHOX3
yiva

d3dI1A0dd
SNOILYIINNAWOD

430IA04d
ERULSER
JOVH0LS

43dI1A0dd
ONISS3004d
18v0Qv0odd

¢30d1A0dd
ONISS3I04d
JAYO

430IA04d
FOINS3S
NOILYOI1ddY

~

I
d30dIA0dd FOIAY3S NOILYWHOAN

~ 9191

~ 7191

~C19)

~ 0191

~ 8091

US 11,360,750 B1

1

SYSTEMS AND METHODS FOR
CONVERTING A LEGACY CODE INTO AN
UPDATED CODE

CLAIM OF PRIORITY

The present patent application claims the benefit of and
priority, under 35 U.S.C. § 119, to provisional patent appli-
cation No. 63/130,241, filed on Dec. 23, 2020, and titled
“SYSTEMS AND METHODS FOR CONVERTING A
LEGACY CODE INTO AN UPDATED CODE”, which is
incorporated by reference herein in its entirety.

FIELD

The present disclosure relates to systems and methods for
converting a legacy code into an updated code.

BACKGROUND

As electronic gaming and networking technologies have
become more advanced, the complexity of games has
increased accordingly. As a result, there may be more
complex storylines, game play objectives, missions and
tasks, capabilities associated with game play avatars, and
scoring. Scoring may occur and be weighted in various ways
and likewise be determined in various categories or on an
individual or team basis.

The significance of the aforementioned problems only
increases as the complexity of electronic games increases.
As such, some players may wish to play older games, which
are less complicated.

It is in this context that embodiments of the invention
arise.

SUMMARY

Embodiments of the present disclosure provide systems
and methods for converting a legacy code into an updated
code.

In one embodiment, a method for facilitating a play of a
legacy game is described. The method includes receiving a
user input during the play of the legacy game, determining
whether one or more blocks of code for servicing the user
input are cached, and accessing one or more instructions of
a legacy game code upon determining that the one or more
blocks of code are not cached. The method further includes
compiling the one or more blocks of code from the one or
more instructions of the legacy game code, caching the one
or more blocks of code, and executing the one or more
blocks of code to display a virtual environment.

In an embodiment, a computing device for facilitating a
play of a legacy game is described. The computing device
includes a processor configured to receive a user input
during the play of the legacy game. The computing device
further includes a cache coupled to the processor and a
memory device coupled to the processor. The processor
determines whether one or more blocks of code for servicing
the user input are stored in the cache. The processor
accesses, from the memory device, one or more instructions
of a legacy game code upon determining that the one or
more blocks of code are not stored in the cache. Also, the
processor compiles the one or more blocks of code from the
one or more instructions of the legacy game code. The
processor stores the one or more blocks of code in the cache
and executes the one or more blocks of code to display a
virtual environment.

20

25

30

35

40

45

50

55

60

65

2

In one embodiment, a method is described. The method
includes generating a first validation result from one or more
instructions of a legacy game code. The one or more
instructions of the legacy game code are associated with one
or more blocks of code. The method further includes exam-
ining one or more memory addresses associated with the one
or more instructions to determine whether the one or more
blocks of code are to be marked as invalid. The method
includes determining whether the one or more blocks of
code are to be executed, and determining whether the one or
more blocks of code are marked as invalid upon determining
that the one or more blocks of code are to be executed. The
method includes examining the one or more memory
addresses to generate a second validation result from the one
or more instructions, comparing the first validation result
with the second validation result to determine whether the
one or more blocks of code are invalid, and recompiling one
or more additional blocks of code associated with the one or
more instructions upon determining that the one or more
blocks of code are invalid. The method includes executing
the one or more additional blocks of code to display a virtual
environment.

Some advantages of the herein described systems and
methods for converting the legacy code into the updated
code include allowing functionality of the legacy code to be
executed by an updated machine. Without the conversion,
due to security issues, the functionality of the legacy code
cannot be executed by the updated machine. For example,
there is no permission to execute the legacy code from the
updated machine and write data generated upon execution of
the legacy code to registers in the updated machine. As such,
by providing the conversion, the execution of the function-
ality of the legacy code by the updated machine is facili-
tated.

Further advantages of the herein described systems and
methods include saving time of execution. As an example,
two or more instructions, such as a routine and a subroutine
or two similar instructions, of the legacy code are combined
into one basic block of the updated code. As such, execution
of the updated code is faster compared to execution of the
legacy code.

Additional advantages of the herein described systems
and methods for converting the legacy code into the updated
code include recompiling one or more additional basic
blocks of the updated code upon determining that one or
more basic blocks of the updated code are invalid. For
example, when the one or more basic blocks are marked as
invalid, it is determined whether the one or more basic
blocks are actually invalid. Upon determining so, instead of
executing the one or more basic blocks, the one or more
additional basic blocks are compiled and executed. The one
or more additional basic blocks correspond to the same
game to which the one or more basic blocks correspond.

Yet further advantages of the herein described systems
and methods for converting the legacy code into the updated
code include that all of the basic blocks do not need to be
checked for invalidity. For example, only those basic blocks
that are marked as invalid after compiling the basic blocks
are checked for validity. This reduces latency in displaying
a virtual environment from the one or more basic blocks.
Also, processing power used for checking all of the basic
blocks for invalidity is not needed.

Also, advantages of the herein described systems and
methods for converting the legacy code into the updated
code include saving processing time and processing power
when the updated code for a game is already compiled. Once
the updated code is generated at a server or at a game

US 11,360,750 B1

3

console, the updated code need not be recompiled. Rather,
the updated code can be transferred from the server or the
game console to another game console. As such, processing
time and processing power in regenerating the updated code
at the other game console is saved.

Other aspects of the present disclosure will become
apparent from the following detailed description, taken in
conjunction with the accompanying drawings, illustrating by
way of example the principles of embodiments described in
the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are best
understood by reference to the following description taken
in conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram to illustrate an embodiment of
a system for generation of basic blocks of an updated code.

FIG. 2 is a flowchart to illustrate an embodiment of a
method for compiling and executing a basic block of a game
code.

FIG. 3 is a block diagram to illustrate an embodiment of
a system for compiling and executing the basic blocks.

FIG. 4A is a diagram of an embodiment of a system to
illustrate compiling of the basic blocks within a game
console.

FIG. 4B is a diagram of an embodiment of a system to
illustrate compiling of the basic blocks within a server
system.

FIG. 5A is a diagram to illustrate an embodiment of a
basic block.

FIG. 5B is a diagram to illustrate an embodiment of a
compile operation performed by a basic block compiler.

FIG. 6A is a diagram of an embodiment of a system to
illustrate components of the emulation processor system.

FIG. 6B is a flowchart to illustrate an embodiment of a
method for compiling and executing the basic blocks.

FIG. 6C is a diagram of an embodiment of a system to
illustrate that for different user inputs, different basic blocks
are compiled dynamically.

FIG. 7A is a diagram of an embodiment of a system to
illustrate deletion of an emulated processing unit (PU) code
from a memory device.

FIG. 7B is a flowchart to illustrate an embodiment of a
method for deleting the emulated PU code from the memory
device.

FIG. 8A is a diagram of an embodiment of an emulation
processor system to illustrate validation of basic blocks.

FIG. 8B is a flowchart of an embodiment of a method to
illustrate a validation operation performed by the emulation
processor system of FIG. 8A.

FIG. 8C is a continuation of the flowchart of the method
of FIG. 8B.

FIG. 9A is a diagram to illustrate an embodiment of a
legacy machine.

FIG. 9B is a diagram to illustrate an embodiment of an
updated machine.

FIG. 10A is a diagram of an embodiment of a system to
illustrate combining of multiple basic blocks into one basic
block by a basic block compiler.

FIG. 10B is a diagram of an embodiment of a system to
illustrate modification of one or more of the basic blocks.

FIG. 10C is a diagram of an embodiment of the system to
illustrate combining of a basic block created based on a
subroutine with a basic block generated based on an emu-
lated PU code instruction, which calls the subroutine.

30

45

60

65

4

FIG. 10D is a diagram of an embodiment of a system to
illustrate an insertion of a basic block between two basic
blocks.

FIG. 10E is a diagram of an embodiment of a system to
illustrate a switch in an order of execution of basic blocks.

FIG. 11A is a flowchart of an embodiment of a method to
illustrate use of a count of a number of cycles stored in the
basic block n.

FIG. 11B is a continuation of the flowchart of the method
of FIG. 11A.

FIG. 12 is a diagram of an embodiment of a system to
illustrate a transfer of the basic blocks from a first client
device to a second client device.

FIG. 13 is a flow diagram conceptually illustrating vari-
ous operations, which are performed for streaming a cloud
video game to a client device, in accordance with imple-
mentations of the present disclosure.

FIG. 14 is a block diagram of an embodiment of a game
console that is compatible for interfacing with a display
device of a client device and is capable of communicating
via a computer network with a game hosting system.

FIG. 15 is a diagram illustrating components of a head-
mounted display (HMD).

FIG. 16 illustrates an embodiment of an Information
Service Provider (INSP) architecture.

DETAILED DESCRIPTION

Systems and methods for converting a legacy code into an
updated code are described. It should be noted that various
embodiments of the present disclosure are practiced without
some or all of these specific details. In other instances, well
known process operations have not been described in detail
in order not to unnecessarily obscure various embodiments
of the present disclosure.

FIG. 1 is a block diagram to illustrate an embodiment of
a system 100 for generation of basic blocks 1 through n of
the updated code, where n is a positive integer. The system
100 includes a cache 102, a basic block compiler 104, and
an emulated processing unit (PU) code 106 of a legacy game
N having a game title GN, where N is a positive integer. As
an example, a cache, as used herein, is a hardware or
software component that stores data so that future requests
for the data can be served faster. A cache hit occurs when
requested data can be found in the cache, while a cache miss
occurs when it cannot. The cache hits are served by reading
data from the cache, which is faster than re-computing a
result or reading from a slower data store, such as a memory
device, thus, the more requests that can be served from the
cache, the faster a system performs. To illustrate, a cache is
a group of registers, which can be accessed faster, such as by
10 to 100 times, compared to a main memory device.

As an example, a cache has a lower number of memory
addresses than the main memory device. In the example, a
processor first determines whether data used in an operation
is stored at a memory address in the cache and if not the
processor accesses memory addresses in the main memory
device to look for the data.

As an example, a basic block compiler, as used herein, is
a computer program that converts the emulated PU code 106
code into a game code GCN, which is an example of the
updated code. The game code GCN represents functionality
of the legacy game N. The computer program is executed by
one or more processors of an emulated processor system.
The game code GCN is sometimes referred to herein as an
intermediate code. As an example, the intermediate code is
neither a source code nor a machine code. To illustrate, the

US 11,360,750 B1

5

intermediate code includes basic blocks that are not specific
to an architecture of a central processing unit (CPU) or an
architecture of a graphical processing unit (GPU) of an
updated machine, examples of which are provide below. In
the illustration, the intermediate code includes basic blocks
that can be executed by a CPU or a GPU of the updated
machine, examples of which include a Sony PlayStation™
4 (PS4™) or a Sony PlayStation™ 5 (PS5™) or a desktop
computer or a laptop computer or a smartphone or a smart
television. As an example, the source code is written using
a human readable programming language, which can be
plain text. As an example, a basic block compiler, as used
herein, is implemented using hardware or software or a
combination thereof. To illustrate, functionality of the basic
block compiler is implemented using a controller or a
programmable logic device (PLD) or an application specific
integrated circuit (ASIC).

Examples of a controller, as used herein, include a pro-
cessor and a memory device. The processor is coupled to the
memory device. As used herein, as an example, a processor
is a microprocessor, or a CPU, or a GPU, or a microcon-
troller, or an ASIC, or a PLD. Examples of a memory device,
as used herein, include a random access memory (RAM) and
a read-only memory (ROM). To illustrate, the memory
device is a flash memory device, or a hard disk, or a
solid-state storage device, or a redundant array of indepen-
dent disks (RAID), or a combination thereof.

An example of the emulated PU code 106 is a machine
code that directs a processor, such as a CPU or a GPU, of a
legacy machine to perform an operation. For example, the
emulated PU code 106 includes a sequence of instructions
that instruct the CPU of the legacy machine to perform a
specific operation, such as load, store, jump, or an arithmetic
logic unit (ALU) operation on data stored within the CPU’s
registers. As another example, the emulated PU code 106 is
a binary code that includes a series of ones and zeros. As
another example, the emulated PU code 106 includes a
sequence of instructions that instruct the GPU of the legacy
machine to perform a specific operation, such as load, store,
jump, or an ALU operation on data stored within the GPU’s
registers. The GPU of the legacy machine performs an
operation on a virtual object to assign a graphical parameter,
such as color, or intensity, or shade, or texture, or a com-
bination thereof, to the virtual object.

The emulated PU code 106 is specific or unique to an
architecture of the CPU or the GPU of the legacy machine.
For example, the emulated PU code 106 cannot be executed
by a CPU or a GPU of the updated machine. As another
example, the emulated PU 106 executable on Sony Play-
Station™ 1 (PS1) cannot be executed on Sony PlayStation™
2 (PS2) and vice versa.

As an example, the emulated PU code 106 is executed by
the processor of the legacy machine to perform operations in
the legacy game N. To illustrate, the emulated PU code 106
is executed to play legacy games on the legacy machine,
such as the PS1™ or the PS2™. Examples of the legacy
games include video games, such as, Warhawk™, Tango
Dance Fever™, Castlevania Chronicles™, Pacman™, Resi-
dent Evil 2™, and Streetfighter Alpha 3™.

The basic block compiler 104 accesses the emulated PU
code 106 for the legacy game N and converts the emulated
PU code 106 into one or more basic blocks, such as the basic
blocks 1 through n. As an example, each basic block 1
through n has a start identifier and an end identifier to
distinguish one basic block from another. The basic block

20

25

40

45

60

65

6

compiler 104 stores the basic blocks 1 through n in the cache
102. When the basic blocks 1 through n are executed, the
legacy game N is emulated.

FIG. 2 is a flowchart to illustrate an embodiment of a
method 200 for compiling and dispatching a basic block of
the game code GCN. The method 200 is executed by one or
more processors of the updated machine. The method 200
includes an operation 202 of determining whether there is a
cache hit, e.g., whether a basic block is stored in the cache
102. For example, the operation 202 is performed or trig-
gered when a user input during a play of a legacy game is
received. To illustrate, the user input is received to change
a position or an orientation or a combination thereof of a
virtual object of the legacy game N. In the illustration, upon
determining that the user input is received, it is determined
whether a basic block, such as one of the basic blocks 1
through n, is stored in the cache 102 (FIG. 1). In the
illustration, the basic block is to be executed to change the
position or the orientation or the combination thereof of the
virtual object.

As another illustration, the operation 202 is performed
when a user input to change the parameter, such as a look
and feel, of a virtual object of a legacy game is received. In
the illustration, upon determining that the user input is
received, it is determined whether a basic block, such as one
of the basic blocks 1 through n, is stored in the cache 102.
In the illustration, the basic block is to be executed to change
the parameter of the virtual object.

In response to determining that the basic block is cached,
in an operation 204 of the method 200, the basic block is
dispatched. For example, the basic block is executed or run
in the operation 204. To illustrate, the basic block is run by
the CPU of the updated machine to move a virtual object
from one position to another or from one orientation to
another or a combination thereof. As another illustration, the
basic block is executed by the GPU of the updated machine
to assign the parameter to a portion of the virtual object. An
example of a portion of a virtual object includes a pixel of
virtual object or a triangular portion of the virtual object or
a portion of a pre-defined shape of the virtual object. To
illustrate, the virtual object is divided into a pre-determined
number of pixels, and each pixel is assigned a value of the
parameter.

In response to determining that the basic block is not
cached, an operation 206 of compiling the basic block is
performed in the method 200. The operation 206 is per-
formed by the basic block compiler 104 (FIG. 1). For
example, the basic block compiler 104 parses the emulated
PU code 106 (FIG. 1) for the legacy game N to identify an
emulated PU code instruction that includes a function for
servicing the user input received, before the operation 202,
during the play of the legacy game. The user input received,
before the operation 202, triggers the operation 202. To
illustrate, the basic block compiler 104 traverses through
each emulated code PU instruction of the emulated PU code
106 to determine whether the emulated code PU code
instruction includes an operation, such as a function, to
satisfy, such as generate a response to, the user input
received during the play of the legacy game. In the illustra-
tion, once the function is identified, the basic block compiler
104 converts the emulated code PU code instruction to
generate the basic block. In the illustration, in response to
the user input received, before the operation 202, other
emulated code PU code instructions, of the legacy game,
that are no needed to service the user input are not compiled
into basic blocks by the basic block compiler 104.

US 11,360,750 B1

7

In an operation 208 of the method 200, the basic block
generated in the operation 206 is stored in the cache 102 by
the basic block compiler 104. The cached basic block is then
executed in the operation 204 to service the user input
received before the operation 202.

In one embodiment, the method 200 is executed by one or
more processors of a server system. As an example, the
server system includes updated machines as servers. To
illustrate, each server blade is the PS4™ or the PS5™,

In an embodiment, the method 200 is not executed until
a user input is received. For example, there is no determi-
nation whether a basic block, such as one of the basic blocks
1 through n, is stored in the cache 102, no compiling of the
basic blocks, and no execution of the basic blocks until the
user input is received.

In one embodiment, the basic block compiler 104 com-
piles one or more of the basic blocks 1 through n in response
to a first user input during a play of the legacy game N and
compiles one or more of remaining of the basic blocks 1
through n in response to a second user input during a play
of the legacy game N. To illustrate, the basic block compiler
104 generates the basic blocks 1 and 2 to service the first
user input and generates the basic blocks 3 through 7 to
service the second user input. The second user input is
received after the first user input.

FIG. 3 is a block diagram to illustrate an embodiment of
a system 304 for compiling and dispatching basic blocks,
such as the basic blocks 1 through n. The system 300
includes the basic block compiler 104, the cache 102, and a
block dispatcher 302. As an example, the block dispatcher
302 is hardware or software, or a combination thereof, that
carries out operations of one or more of the basic blocks 1
through n to service a user input. To illustrate, the block
dispatcher 302 is a PLD or an ASIC or a controller. As
another illustration, the block dispatcher 302 is a computer
software. As an example, the block dispatcher 302 is the
GPU or the CPU of the updated machine.

The basic block compiler 104 decodes a portion of the
emulated PU code 106 (FIG. 1), such as an operational code
(opcode), and translates the portion into an intermediate
representation for a processing unit of the updated machine.
For example, the basic block compiler 104 parses a portion,
such as one or more instructions, of a CPU code of the
emulated PU code 106 to determine whether the portion of
the CPU code includes functionality to service a user input.
Upon determining so, the basic block compiler 104 trans-
lates the portion of the CPU code into one or more basic
blocks, such as the basic blocks 1 through n. As another
example, the basic block compiler 104 parses a portion, such
as one or more instructions, of a GPU code of the emulated
PU code 106 to determine whether the portion of the GPU
code includes functionality to service a user input. Upon
determining so, the basic block compiler 104 translates the
portion of the GPU code into one or more basic blocks, such
as the basic blocks 1 through n.

Also, the basic block compiler 104 estimates a number of
cycles for execution of each basic block generated from the
portion of the emulated PU code 106 to generate an esti-
mated count. For example, the basic block compiler 104
determines that the basic block 1 includes a jump operation
and a jump operation takes a pre-determined amount of time.
The basic block compiler 104 estimates that the jump
operation of the basic block 1 takes the pre-determined
amount of time. The block compiler 104 stores the estimated
count in the cache 102. For example, the block compiler 104
stores the estimated count in the basic block n for which the
number of cycles is estimated.

—_

0

20

25

w

0

45

55

8

Once the basic blocks are compiled, they are stored in the
cache 102 for fast lookup. For example, when another user
input is received after receiving a user input in response to
which the basic blocks are compiled, and the same basic
blocks can be used for servicing the other user input, the
basic blocks can be accessed from the cache 102 quickly and
do not need to be regenerated.

In addition, one or more of the basic blocks stored in the
cache 102 can be marked as invalid after compilation. The
one or more of the basic blocks, marked as invalid, are later
validated or invalidated during runtime of the basic blocks.
When the one or more of the basic blocks are invalidated,
one or more additional basic blocks are compiled. The
compilation of the one or more additional basic blocks is
sometimes referred to herein as recompiling of the one or
more basic blocks.

Each of the one or more additional basic blocks have the
same structure as that of the one or more basic blocks 1
through n. For example, each of the one or more additional
basic blocks has a source register address, a destination
register address, and an operation. As another example, each
of the one or more additional basic blocks has a source
register address, a destination register address, an operation,
and a number of cycles of execution of the operation of the
additional basic block. In the example, some of the one or
more additional basic blocks include an invalid mark. As yet
another example, each of the one or more additional basic
blocks has a source register address, a destination register
address, an operation, and a number of cycles of execution
of the operation of the additional basic block. It should be
noted that each of the additional blocks of code is executed
in the same manner as each of the basic blocks 1 through n.

The block dispatcher 302 executes or runs one or more of
the basic blocks 1 through n based on a user input. For
example, the block dispatcher 302 executes the basic blocks
1 and 2 to service the first user input and executes the basic
blocks 3 through 7 in response to the second user input. As
an example, the block dispatcher 302 includes a clock
source, such as a digital clock oscillator or a clock generator,
that counts a number of cycles used to execute one or more
of the basic blocks 1 through n based on the user input to
generate a real count. The block dispatcher 302 sends the
real count to the block compiler 104 to update the estimated
count with the real count. For example, the real count is
stored in the basic block n for which the real count is
calculated. To illustrate, the real count is stored in one or
more memory registers of the cache 102 assigned to the
basic block n.

In one embodiment, the basic block compiler 104 does not
estimate the number of cycles for execution of any basic
block. In this embodiment, there is no replacement of the
estimated count with the real count. Rather, in the embodi-
ment, the real count is stored by the block compiler 104 in
the basic block n for which the real count is determined.

FIG. 4A is a diagram of an embodiment of a system 400
to illustrate compiling of the basic blocks 1 through n within
a game console 402. The system 400 includes the game
console 402, a server system 404, a computer network 408,
and a display device 410. The server system 404 includes
one or more servers. As an example, the server system 404
is located within a housing of a data center. The server
system 404 includes a memory device 412, which stores
emulated PU codes, such as the emulated PU code 104. For
example, the memory device 412 stores a game code 1 (gcl),
a game code 2 (gc2), and so on until a game code N (gcN).
The game code geN is an example of the emulated PU code
106 (FIG. 1). Each game code 1 through N is a legacy code

US 11,360,750 B1

9

of a legacy game. To illustrate, the game code gcl is a
machine code for play of a first legacy game and the game
code gc2 is a machine code for play of a second legacy
game. The second legacy game is different from the first
legacy game. It should be noted that as an example, the
memory device 412 is a memory device of the legacy
machine.

As an example, none of the game codes gcl through gcN
can be executed in the updated machine and can be executed
in the legacy machine. To illustrate, a CPU or an operating
system of the updated machine cannot support execution of
the game codes gcl through gen. On the other hand, a CPU
or an operating system of the legacy machine supports
execution of the game codes gcl through gecN. Examples of
a computer network, as used herein, include a wide area and
at work (WAN), such as Internet, or a local area network
(LAN), such as an intranet, or a combination thereof.

The game console 402 is an example of the updated
machine. For example, the game console 402 is the PS4™
or the PS5™. Examples of the display device 410 include a
television, a smart television, and a computer monitor. To
illustrate, the display device 410 is a liquid crystal display
(LCD) device, or a light emitting diode (LED) display
device, or an organic light emitting diode (OLED) display
device.

The system 400 further includes a hand-held controller
414, which is held in one or two hands of a user 1. Examples
of a hand-held controller, as used herein, include a controller
with buttons, a Move™ controller from Sony™ Corpora-
tion, and a gun-shaped controller. Examples of buttons of the
hand-held controller include joysticks, buttons for moving a
virtual object upwards, downwards, left, or right on the
display screen 410, and other buttons for selection of various
features of the legacy game N having the game title GN.

The game console 402 includes a memory device 406 and
an emulation processor system 409. As an example, a
processor system, as used herein, includes one or more
processors that are coupled to each other. The emulation
processor system 409 is coupled to the memory device 406.
The emulation processor system 409 includes the basic
block compiler 104 and the cache 102. The basic block
compiler 104 is coupled to the cache 102.

The game console 402 is coupled to the display device
410 via a wired communication medium, such as a high
definition media interface (HDMI) cable or a wireless con-
nection. Examples of a wireless connection, as used herein,
include a Wi-Fi™ connection or a Bluetooth™ connection.
Also, the hand-held controller 414 is coupled to the game
console 402 via a wired connection or a wireless connection.
Examples of a wired connection, as used herein, include a
serial transfer cable, a parallel transfer cable, and a Universal
Serial Bus (USB) cable.

An example of a client device includes a combination of
a hand-held controller, a game console, and a display device.
Another example of the client device includes a combination
of a hand-held controller and a display device.

The user 1 logs into his/her user account when a user
identification (ID) and a password are authenticated by the
server system 404. The user 1 is assigned a user ID1 by the
server system 1. Once the user 1 logs into his/her user
account, the user 1 can access multiple game titles, such as
a game title G1, a game title Ga, a game title G2, and so on
until the game title GN. The game titles G1, G2 and so on
until the game title GN are examples of titles of legacy
games. The game title Ga is a title of a game that is not a

20

25

40

45

60

65

10

legacy game. Rather, the game title Ga is of a current game,
such as Fortnite™ that is not available for play in the legacy
machine.

After logging into his/her user account, the user 1 selects
one or more buttons on the hand-held controller 414 to select
the game title GN to play a legacy game. Once the user 1
selects the game title GN, a user input 418 indicating the
selection is sent from the hand-held controller 414 via the
game console 402 and the computer network 408 to the
server system 404. As an example, a user input is an input
signal. Upon receiving the user input 418 indicating the
selection of the game title GN, the server system 404
identifies the game code gcN based on the user input 418.
For example, the server system 404 identifies that the game
code gcN has the same game title as that of the game title
GN, a selection of which is indicated in the user input 418.

The server system 404 sends the game code gcN via the
computer network 408 to the game console 402. Upon
receiving the game code gcN, the emulation processor
system 409 stores the game code geN in the memory device
406 of the game console 402.

When a user input 420 is received, via the wireless
connection, from the hand-held controller 414 during a play
the legacy game N having the game code gcN, the emulation
processor system 409 executes the basic block compiler 104
to generate a portion of the game code GCN from a portion
of the game code gcN stored in the memory device 406. The
portion of the game code GCN is generated based on the
user input 420. For example, when the user input 420
includes a request to move a WarHawk™ fighter jet from a
position P1 to a position P2 during a play of the legacy game
N, the basic block compiler 104 parses the game code gcN
to identify an instruction that calculates the position P2 from
the position P1. The basic block compiler 104 converts the
instruction into a basic block of the game code GCN, and the
basic block is then executed to change the position of the
WarHawk™ fighter jet to P2 from P1. In the example, the
basic block of the game code GCN is executed by the GPU
of the emulation processor system 409 to generate one or
more image frames 422. To illustrate, the one or more image
frames 422 are displayed on the display device 410 to
display a virtual environment having the WarHawk™ fighter
jet at the position P2. In this manner, a majority or the
entirety of the game code GCN is compiled by the basic
block compiler 104 and stored in the cache 102 for execu-
tion. As an example, a virtual environment, such as a virtual
scene, includes one or more virtual reality (VR) images or
one or more augmented reality (AR) images.

In an embodiment, communication of data between the
server system 404 and the game console 402 occurs via a
network communication protocol, such as a Transmission
Control Protocol over Internet Protocol (TCP/IP). For
example, the server system 404 includes a network interface
controller to convert data into packets. Examples of a
network interface controller, as used herein, include a net-
work interface card (NIC) and a network adapter. The
network interface controller of the server system 404 is
coupled to the memory device 412 to receive data from the
memory device 412. Upon receiving the data from the
memory device 412, the network interface controller of the
server system 404 embeds the data within one or more
packets by applying the network communication protocol to
the data. The one or more packets are transferred from the
network interface controller of the server system 404 via the
computer network 408 to the game console 402. The game
console 402 includes a network interface controller, which
extracts the data from the one or more packets by applying

US 11,360,750 B1

11

the network communication protocol. The network interface
controller of the game console 402 is coupled to the emu-
lation processor system 409. The network interface control-
ler of the game console 402 provides the data received from
the computer network 408 to the emulation processor system
409. Moreover, the network interface controller of the game
console 402 receives data from the emulation processor
system 409 and embeds the data within one or more packets
by applying the network communication protocol and sends
the one or more packets via the computer network 408 to the
server system 404. The network interface controller of the
server system 404 applies to network communication pro-
tocol to the one or more packets received from the computer
network 408 to extract the data from the one or more packets
and sends the data to the memory device 412 for storage.

In one embodiment, in addition to or instead of the
computer network 408, a cellular network is used to com-
municate data between the server system 404 and the game
console 402. For example, communication between the
server system 404 and the game console 402 is facilitated
using wireless technologies. The wireless technologies
include, for example, 4G or 5G wireless communication
technologies. As used herein, 5G is the fifth generation of
cellular network technology. Also, 5G networks are digital
cellular networks, in which a service area covered by
providers is divided into small geographical areas called
cells. In 5G wireless communication technology, analog
signals representing sounds and images are digitized in a
telephone, converted by an analog-to-digital converter and
transmitted as a stream of bits. All 5G wireless devices in a
cell communicate by radio waves with a local antenna array
and low power automated transceiver (transmitter and
receiver) in the cell, over frequency channels assigned by the
transceiver from a pool of frequencies that are reused in
other cells. Local antennas are connected with the cellular
network by a high bandwidth optical fiber or wireless
backhaul connection. As in other cell networks, a mobile
device crossing from one cell to another is automatically
transferred to the new cell. It should be understood that 5G
networks are just an example type of a communication
network, and embodiments of the disclosure may utilize
earlier generation wireless or wired communication, such as
3G or 4G, as well as later generation wired or wireless
technologies that come after 5G.

In an embodiment, any of the game console 402 and the
server system 404 is referred to herein as a computing
device. Other examples of the computing device include a
tablet, a smartphone, a laptop computer, a desktop computer,
and a smart television.

In one embodiment, each of the game codes gcl through
geN is stored in a separate memory device of the server
system 404 or of a legacy machine. For example, the game
code gcl is stored in a memory device of a first legacy
machine and the game code gc2 is stored in a memory
device of a second legacy machine. As another example, the
game code gcl is stored in a first memory device of the
server system 404 and the game code gc2 is stored in a
second memory device of a server system 404.

In an embodiment, the memory device 412 or the memory
device 406 is not a cache. Rather, each of the memory device
412 or the memory device 406 is a main memory, such as a
RAM.

In one embodiment, the memory device 412 is coupled to
a memory controller. The memory controller reads data from
the memory device 412 and writes data to the memory
device 412. The memory controller is coupled to the net-
work interface controller of the server system 404. The

—_

0

—_

5

20

25

o)

5

40

W

0

60

65

12

memory controller sends data received from the network
interface controller of the server system 404 to the memory
device 412 for storage. The memory controller also sends
data received from the memory device 412 to the network
interface controller of the server system 404 for sending via
the computer network 408 to the game console 402.

FIG. 4B is a diagram of an embodiment of a system 450
to illustrate that the emulation processor system 409 is
located within the server system 404 and the one or more
image frames 422 are sent from the server system 404 via
the computer network 408 to the display device 410 for
display of a virtual environment or a virtual scene. The
system 450 includes the server system 404, display device
410, and the hand-held controller 414.

The server system 404 includes the memory device 412
and the emulation processor system 409. The memory
device 412 is coupled to the emulation processor system
409. The display device 410 is coupled to the computer
network 408 via a network interface controller of the display
device 410. The display device 410 includes a processor that
is coupled to the network interface controller of the display
device 410. The processor of the display device 410 receives
the user input 420 during a play of the legacy game having
the game title GN and the game code gcN, and sends the user
input 420 to the network interface controller of the display
device 410. The network interface controller of the display
device 410 sends the user input 420 via the computer
network 408 to the emulation processor system 409 of the
server system 404.

Upon receiving the user input 420, the emulation proces-
sor system 409 performs the same functions as described
above with reference to FIG. 4A with respect to the game
code gcN to compile the basic blocks 1 through N for
generation of the one or more image frames 422. The server
system 404 sends the one or more image frames 422 via the
computer network 408 to the display device 410 for display
of a virtual environment, such as a virtual environment 452,
on a display screen of the display device 410. For example,
the virtual environment 452 includes a virtual object 454,
which is an example of a Warhawk™ fighter jet. In the
example, the virtual environment 452 includes a virtual
background, which includes one or more virtual objects,
such as a virtual pyramid 455 and a virtual structure 456. In
this example, the virtual object 454 is capable of shooting
virtual missiles at the virtual pyramid 455 and the virtual
structure 456 during a play of the legacy game N having the
game code gcN.

In an embodiment, communication of data between the
server system 404 and the display device 410 occurs via the
network communication protocol. For example, the server
system 404 includes the network interface controller to
convert data into packets. The network interface controller
of the server system 404 is coupled to the emulation pro-
cessor system 409 to receive data from the emulation
processor system and embeds the data within one or more
packets by applying the network communication protocol.
The packets are transferred from the network interface
controller of the server system 404 via the computer network
408 to the display device 410. The network interface con-
troller of the display device 410 extracts the data from the
one or more packets by applying the network communica-
tion protocol. The network interface controller of the display
device is coupled to the processor of the display device 410.
The network interface controller of the display device pro-
vides the data received from the computer network 408 to
the processor of the display device 410. The processor of the
display device 410 renders data, such as the image frames

US 11,360,750 B1

13

422, on the display screen of the display device 410.
Moreover, the network interface controller of the display
device 410 receives data from the processor of the display
device 410 and embeds the data within one or more packets
by applying the network communication protocol and sends
the one or more packets via the computer network 408 to the
server system 404. The network interface controller of the
server system 404 applies to network communication pro-
tocol to the one or more packets received from the computer
network 408 to extract the data from the one or more packets
and sends the data to the emulation processor system 409.

In one embodiment, in addition to or instead of the
computer network 408, a cellular network is used to com-
municate data between the server system 404 and the display
device 410. For example, communication between the server
system 404 and the display device is facilitated using the
wireless technologies.

In an embodiment, instead of the display device 410, a
head-mounted display (HMD) is used. The head-mounted
display is worn on the user 1’s head and includes a display
screen, such as an LED screen or an OLED screen or an
LCD screen. The HMD performs the same functions as that
performed by the display device 410.

FIG. 5A is a diagram to illustrate an embodiment of a
basic block. Each basic block includes a source register
address, a destination register address, and an operation. For
example, the basic block 1 includes a source register address
1, a destination register address 1, and an operation 1. The
basic block 2 includes a source register address 2, a desti-
nation register address 2, and an operation 2 and the basic
block n includes a source register address n, a destination
register address n, and an operation n. As an example, a
source register address is an address of one or more source
registers within the cache 102 and a destination register
addresses is an address of one or more destination registers
within the cache 102. Examples of an operation of a basic
block include a jump operation, and branch operation, a read
operation, a write operation, a compare operation, and a
return operation. Further examples of an operation of a basic
block include an arithmetic operation, such as an add
operation, a subtract operation, a multiply operation, and a
divide operation.

As an example, when the operation n is the read operation,
data is read from the source register address n to execute the
basic block n. As another example, when the operation n is
a write operation, data is written to the destination register
address n to execute the basic block n. As another example,
when the operation n is a move operation, data is read from
the source register address n, the operation n is performed on
the data, and the data is written is to the destination register
address n to execute the basic block n. As yet another
example, when the operation n is the compare operation, a
first value of data stored at a first source register address
mentioned in the basic block n is compared with a second
value of data stored at a second source register address
mentioned in the basic block n to generate a comparison
result and the comparison result is stored at the destination
register address n to execute the basic block n. As another
example, when the operation n is the add operation, a first
value of data stored at the first source address mentioned
within the basic block n is added to a second value of data
stored at the second source address indicated within the
basic block n to generate an add result and the add result is
stored at the destination register address n to execute the
basic block n. As yet another example, when a virtual object,
described herein, is to move from the position P1 to the
position P2 and the operation n is the write operation in

20

25

40

45

60

65

14

which the position of the virtual object is to be updated from
P1 to P2, the position P1 at the destination register address
n is overwritten with the position P2 to execute the basic
block n. In the example, the execution of the basic block n
indicates to the emulation processor system 409 that the
virtual object is to move from the position P1 to the position
P2. Also, in the example, the user input 420 (FIG. 4A)
instructs the emulation processor system 409 to move the
virtual object from the position P1 to P2. Similarly, as
another example, when a virtual object, described herein, is
to move from an orientation O1 to an orientation O2 and the
operation n is the write operation in which the orientation of
the virtual object is to be updated from O1 to O2, the
orientation O1 at the destination register address n is over-
written with the orientation O2 to execute the basic block n.
In the example, the execution of the basic block n indicates
to the emulation processor system 409 that the virtual object
is to move from the orientation O1 to the orientation O2.
Further, in the example, the user input 420 instructs the
emulation processor system 409 to move the virtual object
from the orientation O1 to O2.

As still another example, when a portion of a virtual
object, described herein, is to change color from red to green
and the operation n is the write operation in which the color
of the virtual object is to be updated from red to green, data
representing the color red at the destination register address
n is overwritten with data representing the color green to
execute the basic block n. In the example, the execution of
the basic block n indicates to the emulation processor system
409 that the color of the portion of the virtual object is to be
changed from red to green. Also, in the example, the user
input 420 instructs the emulation processor system 409 to
change the color of the portion of the virtual object from red
to green. In a similar manner, other parameters, such as
intensity and texture, can be modified based on the user
input 420.

Each basic block includes a number of cycles of execution
of the basic block. For example, the basic block 1 includes
a number of cycles 1 of execution of the basic block 1. As
another example, the basic block 2 includes a number of
cycles 2 of execution of the basic block 2 and the basic block
n includes a number of cycles n of execution of the basic
block n. As an example, an estimated number of cycles of
execution of the basic block is estimated by the basic block
compiler 104 (FIG. 1) upon compiling the basic block. In the
example, the estimated number of cycles is stored in the
basic block. Also in the example, after the basic block is
executed by the block dispatcher 302 (FIG. 3), the block
dispatcher 302 updates the estimated number of cycles of
execution in the manner described above with the real count
and provides the real count to the block compiler 104. The
estimated number of cycles is replaced by the real count in
the basic block by the block compiler 104. As another
example, the real count of a number of cycles of execution
of the operation n is generated by the block dispatcher 302
and stored in the basic block n. In this example, there is no
estimation of a number of cycles of execution of the opera-
tion n.

Moreover, as another example, one or more of the basic
blocks 1 through n include an invalid mark indicating that
the one or more of the basic blocks 1 through n be checked
for validity. For example, the basic block n includes an
invalid mark n.

It should be noted that by converting the emulated PU
code 106 into the basic blocks 1 through n of the game code
gcN, a hook, such as a hook block, can be inserted between
any two of the basic blocks 1 through n. For example, a hook

US 11,360,750 B1

15

block n can be inserted between the basic blocks (n-1) and
n. The hook block n has the same structure as that of the
basic block n. For example, the hook block includes a source
register address, a destination register address, an operation,
and a number of cycles of execution of the operation of the
hook block. As an example, due to security issues associated
with the legacy machine, a hook, as described herein, cannot
be inserted between instructions of the emulated CPU code
106 (FIG. 1) stored in the legacy machine for execution on
the legacy machine.

It should further be noted that the basic blocks 1 through
n are keyed into, such as fixed within, the cache 102 (FIG.
1). For example, the basic block 1 has a start memory
address 1, which indicates a location of start of the basic
block 1 in the cache 102. Also, the basic block 1 has an end
memory address 1, which indicates a location of end of the
basic block 1 in the cache 102. As another example, the end
address 1 of the basic block 1 is indicated by an offset in the
cache 106 from the start memory address 1. As yet another
example, the basic block 2 has a start memory address 2,
which indicates a location of start of the basic block 2 in the
cache 102. Also, the basic block 2 has an end memory
address 2, which indicates a location of end of the basic
block 2 in the cache 102. As another example, the end
address 2 of the basic block 2 is indicated by an offset in the
cache 106 from the start memory address 2. Similarly, as
another example, the basic block n has a start memory
address n, which indicates a location of start of the basic
block n in the cache 102. Also, the basic block n has an end
memory address n, which indicates a location of end of the
basic block n in the cache 102. As another example, the end
address n of the basic block n is indicated by an offset in the
cache 106 from the start memory address n. From the start
and end memory addresses, stored in the cache 102, of the
basic blocks 1 through n, the emulation processor system
409 (FIG. 4A), such as the basic block compiler 102, can
identify the locations of the basic blocks 1 through n in the
cache 102.

It should also be noted that in case a user input indicating
that the block dispatcher 302 of the updated machine
execute the basic block n immediately after executing the
basic block 1, the block dispatcher 302 skips execution of
the basic blocks 2 through (n-1) in the cache 102 and jumps
to the basic block n from the basic block 1. In this case,
execution of the basic block 1 is closed by the block
dispatcher 302 when the block dispatcher 302 jumps to the
basic block n. Also, in this case, a start address of a next
basic block is consecutive to an end address of a preceding
basic block. For example, the start address 2 is consecutive
to the end address 1 and the start address n is consecutive to
an end address (n-1) of the basic block (n-1).

In an embodiment, the source register addresses 1 through
n are memory addresses of registers of the cache 102 and the
destination register addresses 1 through n are memory
addresses of registers in the cache 102.

In one embodiment, a basic block includes multiple
operations. For example, the basic block n includes a first
operation, a first source register address, and a first desti-
nation register address. The basic block n further includes a
second operation, a second source register address, and a
second destination register address.

In an embodiment, a basic block includes an operation,
multiple source addresses, and a destination address.

In one embodiment, a basic block includes an operation,
multiple destination addresses, and a source address.

40

45

65

16

In an embodiment, a basic block includes multiple opera-
tions, multiple source addresses, and multiple destination
addresses.

In an embodiment, a basic block includes one or more
operations, one or more source addresses, and one or more
destination addresses.

In an embodiment, a basic block includes either a source
register address or a destination register address but not
both.

In one embodiment, the block compiler 102 does not
estimate the number of cycles for execution of the basic
block n. Rather, the block dispatcher 302 generates the real
count of the number of cycles of execution of the basic block
n and stores the real count in the basic block n.

FIG. 5B is a diagram to illustrate an embodiment of a
compile operation performed by the basic block compiler
104 (FIG. 1). An example of an emulated PU code instruc-
tion M is illustrated as an instruction 550 and an example of
the basic block n is illustrated as a basic block 552, where
M is a positive integer. The instruction 550 includes a source
address M having a length of a bits, a destination address M
having a length of b bits, and an operation M represented by
bits of length c, where a, b, and c are positive integers. As
an example, a is 4, b is 4, and ¢ is 32. As an example, the
a bits, b bits, and ¢ bits are stored in the one or more memory
devices of the legacy machine. For example, the a bits are
stored in the memory device 406 or 412 (FIGS. 4A and 4B).
The operation 552 includes the source register address n
having a length of d bits, the destination address n having a
length of e bits, and the operation n represented by bits of
length f, where d, e, and f are positive integers. As an
example, d is 8, e is 8, and f'is 64. As an example, the d bits,
e bits, and f bits are stored in the one or more registers of the
updated machine. As an example, d is greater than a, e is
greater than b, and f is greater than c. To illustrate, d is 8, e
is 8, and f is 64 when a is 4, b is 4, and ¢ is 32. As another
example, d is 16, e is 16, and fis 128 when ais 4, b is 4, and
cis 32.

To perform the compile operation, the basic block com-
piler 104 (FIG. 1) converts the source address M into the
source register address n, the destination address M into the
destination register address n, and the operation M into the
operation n to generate the basic block n from the emulated
PU code instruction M. For example, the basic block com-
piler 104 shifts 4 bits of the source address M to the right to
occupy 4 memory addresses of 8 source registers in the
cache 102 and masks any bits in remaining four memory
addresses of the 8 source registers. The four memory
addresses occupied by the 4 bits of the source address M are
at the least significant positions of the 8 source registers in
the cache 102 and the remaining four memory addresses in
which the bits are masked are at the most significant
positions of the 8 source registers in the cache 102.

As another example, the basic block compiler 104 shifts
4 bits of the destination address M to the right to occupy 4
memory addresses of 8 destination registers in the cache 102
and masks any bits in remaining four memory addresses of
the 8 destination registers. The four memory addresses
occupied by the 4 bits of the destination address m are at the
least significant positions of the 8 destination registers in the
cache 102 and the remaining four memory addresses in
which the bits are masked are at the most significant
positions of the 8 destination registers in the cache 102.

Similarly, as another example, the basic block compiler
104 shifts 32 bits of the operation M to the right to occupy
32 memory addresses of 64 operation registers in the cache
102 and masks any bits in remaining 32 memory addresses

US 11,360,750 B1

17

of the 64 operation registers. The 32 memory addresses
occupied by the 32 bits of the operation M are at the least
significant positions of the 32 operation registers in the
cache 102 and the remaining 32 memory addresses in which
the bits are masked are at the most significant positions of
the 64 operation registers in the cache 102. The operation n
is stored in the operation registers of the cache 102.

FIG. 6A is a diagram of an embodiment of a system 600
to illustrate components of the emulation processor system
409. The system 600 includes the memory device 412 and
the emulation processor system 409. The basic block com-
piler 104 of the emulation processor system 409 includes a
parser or decoder 602. The basic block compiler 104 further
includes a block creator 604, a block cacher 606A, and a
block reader 608. The emulation processor system 409
includes the block dispatcher 302.

As an example, each of the parser 609, the block creator
604, the block cacher 606, the block reader 608, and the
block dispatcher 302 is implemented using software, or
hardware, or a combination thereof. For example, each of
the parser 609, the block creator 604, the block cacher 606,
the block reader 608, and the block dispatcher 302 is a
separate integrated circuit, such as a PLD or an ASIC or a
controller or a processor or a portion of a computer program.
As another example, each of the parser 609, the block
creator 604, the block cacher 606, the block reader 608, and
the block dispatcher 302 is a separate computer software
program.

The game code gcN includes multiple instructions, such
as an emulated PU code instruction 1, an emulated PU code
instruction 2 and so on until the emulated PU code instruc-
tion M. For example, each instruction of the game code gcN
is a series of bits that can be executed by the processor of the
legacy machine to implement a function, such as moving a
virtual object from the position P1 to the position P2, or
changing an orientation of the virtual object from O1 to O2,
or modifying the parameter of a portion of the virtual object.

The parser 602 is coupled to the block creator 604, which
is coupled to the block cacher 606 and to the block reader
608. The block cacher 606 and the block reader 608 or
coupled to the cache 102. The block reader 608 is coupled
to the block dispatcher 302.

FIG. 6B is a flowchart to illustrate an embodiment of a
method 650 for compiling and executing the basic blocks 1
through n. The method 650 is illustrated using the system
600 of FIG. 6A. In an operation 652 of the method 650, the
block creator 604 determines whether any user input, such
as a user input 1, is received. As an example, the user input
1 is a signal that includes and one or more identifications of
one or more buttons of the hand-held controller 414 (FIG.
4A) that are selected by the user 1. As another example, the
user input 1 is a signal that includes a measure of movement,
such as pitch, yaw, and roll, with respect to an origin of an
Xyz co-ordinate system centered on the hand-held controller
414. As yet another example, the user input 1 is a signal that
includes a measure of movement, such as pitch, yaw, and
roll, with respect to an origin of an xyz co-ordinate system
of the HMD. An example of the user input 1 is the user input
420 (FIG. 4A).

The block creator 604 continues to check whether the user
input is received in the operation 652 upon determining that
the user input is not received. For example, the basic block
compiler 104 does not run any of basic blocks (n+1) through
p stored in the cache 102 (FIG. 1) and the basic block
compiler 104 (FIG. 1) does not identify any of the emulated
PU code instructions 1 through M (FIG. 6A) when the user
input is not received in the operation 652, where p is a

—_

5

40

W

0

18

positive integer. It is assumed that at a time the user input is
received in the operation 652, the basic blocks 1 through n
are not generated and are not stored in the cache 102.

On the other hand, in response to determining that the user
input is received in the operation 652, in an operation 654 of
the method 650, the block creator 604 determines whether
one or more of the basic blocks (n+1) through p that are
stored in the cache 102 satisfy the user input. For example,
the block creator 604 sends a request to the block reader 608
to access the basic blocks (n+1) through p from the cache
102. In the example, the block reader 608, upon receiving
the request, reads the basic blocks (n+1) through p from the
cache 102 and sends the basic blocks (n+1) through p to the
block creator 604. Further, in the example, the block creator
604 determines whether functionality of one or more of the
basic blocks (n+1) through p satisfies, such as services, the
user input 1. To illustrate, when the user input 1 indicates to
change a position of a virtual object from the position P1 to
the position P2, the block creator 604 determines whether
any of the basic blocks (n+1) through p include an operation
of overwriting the position P1 with the position P2. Upon
determining that one or more of the basic blocks (n+1)
through p include the operation of overwriting the position
P1 with P2, the block creator 604 determines that one or
more functionalities of the one or more of the blocks (n+1)
through p satisfies the user input 1. On the other hand, upon
determining that none of the basic blocks (n+1) through p
include the operation of overwriting the position P1 with P2,
the block creator 604 determines that functionalities of the
basic blocks (n+1) through p do not satisty the user input 1.

As another illustration, when the user input 1 is to change
an orientation of a virtual object from the orientation O1 to
the orientation O2, the block creator 604 determines whether
any of the basic blocks (n+1) through p include an operation
of overwriting the orientation O1 with the orientation O2.
Upon determining that one or more of the basic blocks (n+1)
through p includes the operation of overwriting the orien-
tation O1 with O2, the block creator 604 determines that one
or more functionalities of the one or more of the basic blocks
(n+1) through p satisfies the user input 1. On the other hand,
upon determining that none of the basic blocks (n+1)
through p includes the operation of overwriting the orien-
tation O1 with O2, the block creator 604 determines that
functionalities of the basic blocks (n+1) through p do not
satisfy the user input 1. As yet another illustration, when the
user input 1 is to change a value of the parameter of a portion
of a virtual object from a first value to a second value, the
block creator determines whether any of the basic blocks
(n+1) through p include an operation of overwriting the first
value with the second value. Upon determining that one or
more of the basic blocks (n+1) through p include the
operation of overwriting the first value with the second
value, the block creator 604 determines that one or more
functionalities of the one or more of the basic blocks (n+1)
through p satisfies the user input 1. On the other hand, upon
determining that none of the basic blocks (n+1) through p
include the operation of overwriting the first value at the
second value, the block creator 604 determines that func-
tionalities of the basic blocks (n+1) through p do not satisfy
the user input 1.

Upon determining that the functionalities of one or more
of the basic blocks (n+1) through p satisfy the user input 1,
in an operation 656 of the method 600, the block dispatcher
302 executes the one or more of the basic blocks (n+1)
through p. For example, upon determining that the function-
alities of one or more of the basic blocks (n+1) through p
satisfy the user input 1, the block creator 604 sends an

US 11,360,750 B1

19

instruction to the block dispatcher 302 to execute the one or
more of the basic blocks (n+1) through p. In the example, in
response to receiving the instruction, the block dispatcher
302 sends a command to the block reader 608 to read the one
or more of the basic blocks (n+1) through p from the cache
102 for satisfying the user input received in the operation
652. Also, in the example, upon receiving the one or more
of the basic blocks from the cache 102 in response to the
command, the block dispatcher 302 executes the one or
more of the basic blocks (n+1) through p.

On the other hand, upon determining that the function-
alities of the blocks (n+1) through p do not satisfy the user
input 1, in an operation 658 of the method 600, the block
compiler 102 identifies one or more of the emulated PU code
instructions 1 through M for servicing the user input
received in the operation 652. For example, upon determin-
ing that the functionalities of the blocks (n+1) through p do
not satisfy the user input 1, the block creator 604 sends a
request to the parser 602 to parse the game code gcN to
identify and obtain one or more of the emulated PU code
instructions 1 through M of the game code gcN that satisfy
the functionality identified in the user input 1. In the
example, in response to receiving the request, the parser 602
accesses the memory device 412 to parse the game code gcN
to determine whether functionalities of one or more of the
emulated PU code instructions 1 through M satisfy the user
input 1 and upon determining that the functionalities of one
or more of the emulated PU code instructions 1 through M
satisfy the user input 1, the parser 602 provides the one or
more of the emulated PU code instructions 1 through M to
the block creator 604.

To illustrate, when the user input 1 is to change a position
of a virtual object from the position P1 to the position P2, the
parser 602 determines whether any of the emulated PU code
instructions 1 through M include an operation of overwriting
the position P1 with the position P2. Upon determining that
one or more of the emulated PU code instructions 1 through
M include the operation of overwriting the position P1 with
P2, the parser 602 determines that one or more functionali-
ties of the one or more of the emulated PU code instructions
1 through M satisfies the user input 1. On the other hand,
upon determining that none of the emulated PU code
instructions 1 through M includes the operation of overwrit-
ing the position P1 with P2, the parser 602 determines that
functionalities of the emulated PU code instructions 1
through M do not satisfy the user input 1.

As another illustration, when the user input 1 is to change
an orientation of a virtual object from the orientation O1 to
the orientation O2, the parser 602 determines whether any of
the emulated PU code instructions 1 through M include an
operation of overwriting the orientation O1 with the orien-
tation O2. Upon determining that one or more of the
emulated PU code instructions 1 through M includes the
operation of overwriting the orientation O1 with O2, the
parser 602 determines that one or more functionalities of the
one or more of the emulated PU code instructions 1 through
M satisfies the user input 1. On the other hand, upon
determining that none of the emulated PU code instructions
1 through M includes the operation of overwriting the
orientation O1 with O2, the parser 602 determines that
functionalities of the emulated PU code instructions 1
through M do not satisfy the user input 1. As yet another
illustration, when the user input 1 is to change a value of the
parameter of a portion of a virtual object from a first value
to a second value, the parser 602 determines whether any of
the emulated PU code instructions 1 through M include an
operation of overwriting the first value with the second

20

25

40

45

60

65

20

value. Upon determining that one or more of the emulated
PU code instructions 1 through M include the operation of
overwriting the first value with the second value, the parser
602 determines that one or more functionalities of the one or
more of the emulated PU code instructions 1 through M
satisfies the user input 1. On the other hand, upon determin-
ing that none of the emulated PU code instructions 1 through
M include the operation of overwriting the first value at the
second value, the parser 602 determines that functionalities
of the emulated PU code instructions 1 through M do not
satisfy the user input 1.

In an operation 660 of the method 600, when the one or
more of the emulated PU code instructions 1 through M that
satisfy the user input 1 are received from the parser 602, the
block creator 604 applies the compile operation, described
above, to generate one or more of the basic blocks 1 through
n from the one or more of the emulated PU code instructions
1 through M. For example, the block creator 604 compiles
the one or more of the basic blocks 1 through n, sends the
one or more of the basic blocks 1 through n to the block
cacher 606, and sends an instruction to the block dispatcher
302 to execute the one or more of the basic blocks 1 through
n. Upon receiving the one or more of the basic blocks 1
through n, the block cacher 606 stores the one or more of the
basic blocks 1 through n in the cache 102.

In an operation 662 of the method 600, upon receiving the
instruction from the block creator 604 to execute the one or
more of the basic blocks 1 through n, the block dispatcher
302 runs the one or more of the basic blocks 1 through n to
service the user input received in the operation 652. For
example, the block dispatcher 302 sends a request to the
block reader 608 to read the one or more of the basic blocks
1 through n from the cache 102. Upon receiving the com-
mand, the block reader 608 reads the one or more of the
basic blocks 1 through n from the cache 102 and provides
the one or more of the basic blocks 1 through n to the block
dispatcher 302. Upon receiving the one or more of the basic
blocks 1 through n, the block dispatcher 302 executes the
one or more of the basic blocks 1 through n to generate the
virtual environment 452 (FIG. 4B). To illustrate, the block
dispatcher 302 executes the one or more of the basic blocks
1 through n to generate an image frame, which includes
virtual environment data, such as a position and an orien-
tation of the virtual object 454, the parameter of the virtual
object 454, positions and orientations of other virtual objects
in the virtual environment 452, and the parameter of the
other virtual objects in the virtual environment 452. The
block dispatcher 302 provides the image frame to a GPU of
the emulation processor system 409 to display, such as
render, the virtual environment 452 on the display screen of
the display device 410 (FIG. 4A). The method 600 repeats,
when another user input, such as the user input 2, is received
after the user input 1 is received in the operation 652.

FIG. 6C is a diagram of an embodiment of a system 670
to illustrate that for different user inputs, different basic
blocks or different sets of basic blocks are compiled dynami-
cally. The system 670 includes the memory device 412, the
basic block compiler 104, the block dispatcher 302, and the
cache 102. When the user input 1 is received by the basic
block compiler 104, the basic block compiler 104 deter-
mines if the basic block 1 that corresponds to the user input
1 is stored in the cache 102. For example, the basic block 1
corresponds to the user input 1 when the basic block 1
includes a function for servicing the user input 1. To
illustrate, when the user input 1 is to move a virtual object
from the position P1 to the position P2 and the basic block
1 includes an operation of updating the position P1 stored at

US 11,360,750 B1

21

the destination register address 1 with the position P2, the
basic block 1 can service the user input 1. In the illustration,
the user input 1 is a signal indicating a selection of a move
to right button or a move to left button or a move up button
or a move down button on the hand-held controller 414
(FIG. 4A). Similarly, the basic block 2 does not correspond
to the user input 1 when the basic block 2 does not include
a function for servicing the user input 1. To illustrate, when
the user input 1 is to move a virtual object from the position
P1 to the position P2 without changing an orientation of the
virtual object and the basic block 2 includes an operation of
updating the orientation O1 stored in the destination register
2 with the orientation O2, the basic block 2 cannot service
the user input 1. Upon determining that the basic block 1 that
can service the user input 1 is stored in the cache 102, the
basic block compiler 104 provides the basic block 1 to the
block dispatcher 302 for executing the basic block 1.

On the other hand, upon determining that the basic block
1 is not stored in the cache 102, the basic block compiler 104
parses the emulated PU code 106 stored in the memory
device 412 to identify the emulated PU code instruction 1
corresponding to the user input 1. For example, the basic
block compiler 104 parses the emulated PU code 106 to
identify that the emulated PU code instruction 1 satisfies,
such as services, the user input 1. To illustrate, when the user
input 1 is to move a virtual object from the position P1 to the
position P2 and the emulated PU code instruction 1 includes
a function of updating the position P1 stored at the desti-
nation address 1 with the position P2, the emulated PU code
instruction 1 can service the user input 1. Similarly, the
emulated PU code instruction 2 does not correspond to the
user input 1 when the emulated PU code instruction 2 does
not include a function for servicing the user input 1. To
illustrate, when the user input 1 is to move a virtual object
from the position P1 to the position P2 without changing an
orientation of the virtual object and the emulated PU code
instruction 2 includes an operation of updating the orienta-
tion O1 stored at the destination address 2 with the orien-
tation O2, the emulated PU code instruction 2 cannot service
the user input 1.

Upon determining that the emulated PU code instruction
1 can service the user input 1 and the emulated PU code
instruction 2 cannot service the user input 1, the basic block
compiler 104 accesses, such as reads, the emulated PU code
instruction 1 from the memory device 412 and compiles the
basic block 1 from the emulated PU code instruction 1. The
basic block compiler 102 does not compile the basic block
2 from the emulated PU code instruction 2 in response to
receiving the user input 1. The basic block compiler 104
stores the basic block 1 in the cache 102 and sends an
instruction to the block dispatcher 302 to access and execute
the basic block 1. Upon receiving the instruction, block
dispatcher 302 reads the basic block 1 from the cache 102
and runs the basic block 1.

Similarly, when the user input 2 is received by the basic
block compiler 104, the basic block compiler 104 deter-
mines if the basic block 2 that corresponds to the user input
2 is stored in the cache 102. For example, the basic block 2
corresponds to the user input 2 when the basic block 2
includes a function for servicing the user input 2. To
illustrate, when the user input 2 is to move a virtual object
from the orientation O1 to the orientation O2 and the basic
block 2 includes an operation of updating the orientation O1
stored at the destination register address 2 with the orien-
tation O2, the basic block 2 can service the user input 2. In
the illustration, the user input 2 is a signal indicating a
selection of a rotate clockwise or a rotate counterclockwise

—_

0

—_

5

20

40

W

5

60

65

22

button on the hand-held controller 414. Similarly, the basic
block 1 does not correspond to the user input 2 when the
basic block 1 does not include a function for servicing the
user input 2. To illustrate, when the user input 2 is to move
a virtual object from the orientation O1 to the orientation O2
without changing a position of the virtual object and the
basic block 1 includes an operation of updating the position
P1 stored in the destination register 1 with the position P2,
the basic block 1 cannot service the user input 2. Upon
determining that the basic block 2 can service the user input
2 is stored in the cache 102, the basic block compiler 104
provides the basic block 2 to the block dispatcher 302 for
executing the basic block 2.

On the other hand, upon determining that the basic block
2 is not stored in the cache 102, the basic block compiler 104
parses the emulated PU code 106 stored in the memory
device 412 to identify the emulated PU code instruction 2
corresponding to the user input 2. For example, the basic
block compiler 104 parses the emulated PU code 106 to
identify that the emulated PU code instruction 2 satisfies,
such as services, the user input 2. To illustrate, when the user
input 2 is to move a virtual object from the orientation O1
to the orientation O2 and the emulated PU code instruction
2 includes a function of updating the orientation O1 stored
at the destination address 2 with the orientation O2, the
emulated PU code instruction 2 can service the user input 2.
Similarly, the emulated PU code instruction 1 does not
correspond to the user input 2 when the emulated PU code
instruction 1 does not include a function for servicing the
user input 2. To illustrate, when the user input 2 is to move
a virtual object from the orientation O1 to the orientation O2
without changing a position of the virtual object and the
emulated PU code instruction 1 includes an operation of
updating the position P1 stored in the destination address 1
with the position P2, the emulated PU code instruction 1
cannot service the user input 2.

Upon determining that the emulated PU code instruction
2 can service the user input 2 and the emulated PU code
instruction 1 cannot service the user input 2, the basic block
compiler 104 accesses, such as reads, the emulated PU code
instruction 2 from the memory device 412 and compiles the
emulated PU code instruction 2 to generate the basic block
2. The basic block compiler 102 does not compile the
emulated PU code instruction 1 in response to receiving the
user input 2. The basic block compiler 104 stores the basic
block 2 in the cache 102 and sends an instruction to the block
dispatcher 302 to access and execute the basic block 2. Upon
receiving the instruction, block dispatcher 302 reads the
basic block 2 from the cache 102 and runs the basic block
2.

FIG. 7A is a diagram of an embodiment of a system 700
to illustrate deletion of the emulated PU code 106 from the
memory device 412. The system 700 includes the block
creator 604, an instruction remover 702, and the memory
device 412. Examples of the instruction remover 702
include a processor, an ASIC, a PLD, a computer program,
a portion of a computer program, and a microcontroller. The
instruction remover 702 is coupled to the block creator 604
and to the memory device 412.

FIG. 7B is a flowchart to illustrate an embodiment of a
method 720 for deleting the emulated PU code 106 (FIG.
6C) from the memory device 412 (FIG. 6C). The method
720 includes an operation 702 for determining whether all
instructions of the emulated PU code 106 are compiled. For
example, the block creator 604 (FIG. 7A) determines
whether all of the emulated PU code instructions 1 through
M of the game code gcN are compiled. To illustrate, before

US 11,360,750 B1

23

compiling any of the emulated PU code instructions 1
through M of the game code gcN, the block creator 604
sends a request to the processor of the legacy machine to
obtain identities of all of the emulated PU code instructions
1 through M of the game code gcN. In the illustration, the
block creator 604 sends an identity, such as one or more bits,
of the game code geN to the processor of the legacy machine
to obtain identities of all of the emulated PU code instruc-
tions 1 through M of the game code gcN. Examples of the
identities of the emulated PU code instructions 1 through M
include one or more bits. To illustrate, the identity of the
emulated PU code instruction M is represented by a first
sequence of bits and the identity of the emulated PU code
instruction M-1 is represented by a second sequence of bits,
which is different from the first sequence. Upon receiving
the identities of the emulated PU code instructions 1 through
M from the processor of the legacy machine, the block
creator 604 stores the identities in a table in the cache 102.
As each of the emulated PU code instructions 1 through M
is compiled, the block creator 604 updates the table to
include indications that identify which of the emulated PU
code instructions 1 through M are compiled. The block
creator 604 determines whether all of the emulated PU code
instructions 1 through M are compiled from the indications
that identify which of the emulated PU code instructions 1
through M are compiled.

Upon determining that all the emulated PU code instruc-
tions 1 through M of the game code gcN are compiled, the
block creator 604 sends a command to the instruction
remover 702 (FIG. 7A) to delete the game code gcN from
the memory device 412. Upon receiving the command, in an
operation 724 of the method 720, the instruction remover
702 erases the emulated PU code instructions 1 through M
from the memory device 412.

On the other hand, upon determining that one or more of
the emulated PU code instructions 1 through M of the game
code gcN are not compiled based on the table, in an
operation 726 of the method 720, the block creator 604 does
not send the command to the instruction remover 702 to
delete the game code gcN from the memory device 412.
Until the command to delete the game code geN is received,
the instruction remover 702 does not delete the emulated PU
code instructions 1 through M from the memory device 412.

In one embodiment, the block creator 604 determines
whether the game code geN is accessed from the memory
device 412 (FIG. 4A) within a pre-determined time period,
which is stored in the cache 102, from the latest time the
game code gcN is accessed from the memory device 412. As
an example, the block creator 604 can access the Internet
clock via the computer network 408 to determine the latest
time and the pre-determined time period. As another
example, the block creator 604 includes a clock source, such
as a clock oscillator, to count the latest time and the
pre-determined time period. Upon determining that the
game code gcN is not accessed from the memory device 412
within the pre-determined time period, the block creator 604
sends a command to the instruction remover 702 to delete
the game code gcN from the memory device 412. As an
example, when the game code gcN is not accessed within the
pre-determined time period, a majority of emulated CPU
code instructions 1 through M are accessed by the basic
block compiler 104 to compile one or more of the basic
blocks 1 through n. As another example, when the game
code geN is not accessed within the pre-determined time
period, a number of emulated CPU code instructions 1
through M that are frequently used during a play of the
legacy game N having the game title GN are accessed by the

20

25

40

45

60

65

24

basic block compiler 104 to compile one or more of the basic
blocks 1 through n. On the other hand, upon determining that
the game code gcN is accessed within the pre-determined
time period, the block creator 604 does not send the com-
mand to the instruction remover 702 and the game code gcN
is not deleted from the memory device 412.

FIG. 8A is a diagram of an embodiment of an emulation
processor system 800 to illustrate validation of basic blocks.
The emulation processor system 800 is an example of the
emulation processor system 409 (FIG. 4B). The emulation
processor system 800 includes the basic block compiler 104,
the cache 102, a block validator 802 and a block flagger 804.
The block validator 802 is coupled to the block creator 604,
the block dispatcher 302, the parser 602, and the block
flagger 804. Each of the clock validator 802 and the block
flagger 804 is coupled to the cache 102.

As an example, the block validator 802 is implemented as
an ASIC, or a PLD, or a microcontroller, or a processor, or
a computer program, or a portion of a computer program.
Also as an example, the block flagger 804 is implemented as
an ASIC, or a PLD, or a microcontroller, or a processor, or
a computer program, or a portion of a computer program.

In one embodiment, the terms ASIC, PLD, microcon-
troller, microprocessor, controller, and processor are used
herein interchangeably.

FIG. 8B is a flowchart of an embodiment of a method 850
to illustrate a validation operation performed by the emula-
tion processor system 800 (FIG. 8A). In an operation 852 of
the method 800, the block validator 802 (FIG. 8A) deter-
mines whether the basic block n is compiled. For example,
the block validator 802 accesses, such as reads, the cache
102 to determine whether a new basic block, such as the
basic block n, is now stored in the cache 102 compared to
the basic blocks 1 through n-1 previously stored in the cache
102. The block validator 802 previously identified the basic
blocks 1 through n-1 stored in the cache 102. Upon deter-
mining that the basic block n is not cached, the block
validator 802 continues to access the cache 102 to determine
whether the new basic block is cached. For example, the
block validator 802 periodically parses the basic blocks 1
through n-1 stored in the cache 102 to determine whether
the basic block n is stored in the cache 102.

Upon determining that the basic block n is cached, the
block validator 802 creates, in an operation 854 of the
method 800, a first hash value from the one or more of the
emulated PU code instructions 1 through M from which the
basic block n is compiled. For example, the block validator
802 sends a request to the parser 602 to obtain the one or
more of the emulated CPU code instructions 1 through M
from the memory device 412. The request includes identities
of memory addresses of the basic block n in the cache 102.
The identities of the memory addresses of the basic block n
are received, such as obtained by request, from the block
creator 604 by the block validator 602. The parser 602, upon
receiving the request from the block validator 802, reads the
one or more of the emulated PU code instructions 1 through
M from the memory device 412 and provides the one or
more of the emulated PU code instructions 1 through M to
the block validator 802. To illustrate, when the one or more
of the emulated PU code instructions 1 through M are
provided to the basic block compiler 104 for compiling the
basic block n, the parser 602 stores a one-to-one correspon-
dence between one or more identities of one or more
memory addresses occupied by the basic block n in the
cache 102 and one or more identities of one or more memory
addresses occupied by the one or more of the emulated PU
code instructions 1 through M in the memory device 412.

US 11,360,750 B1

25

The parser 602 receives the identities of the memory
addresses of the basic block n in the cache 102 from the
block validator 802 and identifies the one or more memory
addresses of the one or more of the emulated PU code
instructions 1 through M in the memory device 412 from the
one-to-one correspondence. The parser 602 reads the one or
more of the emulated PU code instructions 1 through M
from the one or more memory addresses of the memory
device 412 and provides the one or more of the emulated PU
code instructions 1 through M to the block validator 802.

Continuing with the example, upon receiving the one or
more of the emulated PU code instructions 1 through M
from the parser 602, the block validator 802 generates the
first hash value from the one or more of the emulated PU
code instructions 1 through M and stores the first hash value
in the cache 102. To illustrate, the block validator 802
generates a digest or a checksum from the one or more of the
emulated PU code instructions 1 through M corresponding
to the basic block n. In the example, the first hash value is
stored in one or more registers, of the cache 102, that are
keyed to include the basic block n.

In an operation 856 of the method 800, the block validator
802 sends a command to the parser 602 to determine
whether the one or more memory addresses, within the
memory device 412, at which the one or more of the
emulated PU code instructions 1 through M are stored, are
overwritten. The one or more memory addresses, within the
memory device 412, can be overwritten with data from a
compact disc-read only memory (CD-ROM) of the legacy
machine. The data can be an update to the one or more of the
emulated PU code instructions 1 through M. The update to
the one or more of the emulated PU code instructions 1
through M is referred to as updated instructions. Alterna-
tively, the data can be corrupted data, which is not the
updated instructions. The parser 602, upon receiving the
command from the block validator 802 sends a request to the
processor of the legacy machine to determine whether the
one or more memory addresses, within the memory device
412, at which the one or more of the emulated PU code
instructions 1 through M are stored are overwritten.

Upon receiving the request from the parser 602, the
processor of the legacy machine provides a response to the
request and the response indicates whether the one or more
memory addresses, within the memory device 412, at which
the one or more of the emulated PU code instructions 1
through M are stored are overwritten. Upon receiving the
response that the one or more memory addresses, within the
memory device 412, at which the one or more of the
emulated PU code instructions 1 through M are stored are
not overwritten, the block validator 802 sends a command to
the block flagger 804 (FIG. 8A) to not mark the basic block
n as invalid. Upon receiving the command, in an operation
858 of the method 800, the block flagger 804 does not mark
the basic block n as invalid.

On the other hand, upon receiving the response that the
one or more memory addresses, within the memory device
412, at which the one or more of the emulated PU code
instructions 1 through M are stored are overwritten, in an
operation 860 of the method 850, the block validator 802
sends a command to the block flagger 804 (FIG. 8A) to mark
the basic block n as invalid. Upon receiving the command to
mark the basic block n as invalid, the block flagger 804
marks the basic block n as invalid. For example, the block
flagger 804 accesses the basic block n within the cache 102
and includes an identifier, such as the invalid mark n (FIG.
5A), within the memory addresses in the cache 102 having

20

25

30

35

40

45

50

55

60

65

26

the basic block n to indicate that the basic block n is invalid.
An example of the invalid mark n is a sequence of bits.

In one embodiment, a hash value is an example of a
validation result.

FIG. 8C is a continuation of the flowchart of the method
800 of FIG. 8B. In an operation 862 of the method 800, the
block validator 802 (FIG. 8A) determines whether the basic
block n is to be executed. For example, the block dispatcher
302 sends an indication to the block validator 802 that the
basic block n is to be executed. Upon receiving the indica-
tion from the block dispatcher 302 that the basic block n is
to be executed, the block validator 802 determines that the
basic block n is to be executed. Until the indication is
received, the block validator 802 does not determine that the
basic block n is to be validated.

Upon determining that the basic block n is to be executed,
the block validator 802, in an operation 864 of the method
800, determines whether the basic block n is marked as
invalid. For example, the block validator 802 sends a
command to the block flagger 804 to determine whether the
basic block n is flagged as invalid. Upon receiving the
command, the block flagger 804 sends an indication to the
block validator 802 whether the basic block n is flagged as
invalid. To illustrate, the block flagger 804 accesses the basic
block n to determine whether the basic block n includes the
invalid mark n to generate and send the indication of
invalidity to the block validator 802. As another illustration,
the block flagger 804 accesses the basic block n to determine
whether the basic block n does not include the invalid mark
n to generate and send the indication of lack of invalidity to
the block validator 802. Upon receiving the indication from
the block flagger 804 that the basic block n is marked as
invalid, the block validator 802 determines that the basic
block n is invalid. On the other hand, upon receiving the
indication from the block flagger 804 that the basic block n
lacks the invalid mark n, the block validator 802 determines
that the basic block n is not marked as invalid.

Upon determining that the basic block n is not marked as
invalid, in an operation 866 of the method 800, the basic
block n is executed. For example, the operation 866 is
similar to the operation 662 (FIG. 6B). To illustrate, the
block validator 802 sends a command to the block dis-
patcher 302 to execute the basic block n. Upon receiving the
command to execute the basic block n, the block dispatcher
302 runs the basic block n. In this illustration, until the
command is received from the block validator 802 for
execution of the basic block n, the block dispatcher 302 does
not execute the basic block n.

On the other hand, in response to determining that the
basic block n is marked as invalid, in an operation 868 of the
method 800, the block validator 802 determines whether the
basic block n is actually valid. For example, upon determin-
ing that the basic block n is marked as invalid, the block
validator 802 creates a second hash value from either the
updated instructions or the corrupted data stored in the same
memory addresses, within the memory device 412, at which
the one or more of the emulated PU code instructions 1
through M from which the basic block n is compiled are
stored. In the example, the second hash value is stored in one
or more registers, of the cache 102, that are keyed to include
the basic block n. To illustrate, the block validator 802 sends
a request to the parser 602 to obtain the updated instructions
or the corrupted data stored at the one or more memory
addresses within the memory device 412. The parser 602,
upon receiving the request, reads the updated instructions or
the corrupted data from the one or more memory addresses
from the memory device 412, and provides the updated

US 11,360,750 B1

27

instructions or the corrupted data to the block validator 802.
In the illustration, the block validator 802 generates the
second hash value from the updated instructions or the
corrupted data and stores the second hash value in the cache
102. For example, the block validator 802 generates a digest
or a checksum from the updated instructions or the corrupted
data. In the illustration, the block validator 802 compares the
second hash value with the first hash value to determine
whether the basic block n is valid. Upon determining, based
on the comparison, that there is a match between the first
hash value and the second hash value, the block validator
802 determines that the basic block n is valid. The match
occurs when the second hash value is generated from the
updated instructions. On the other hand, upon determining,
based on the comparison, that there is a lack of match
between the first hash value and the second hash value, the
block validator 802 determines that the basic block n is
invalid. The lack of match occurs when the second hash
value is generated from the corrupted data.

In response to determining that the basic block n is valid,
in an operation 870 of the method 800, the invalid mark n
is removed. For example, the block validator 802 sends a
command to the block flagger 804 to remove the invalid
mark n from the basic block n stored in the cache 102. Upon
receiving the command from the block validator 802, the
block flagger 804 accesses the basic block n from the cache
102 and erases the invalid mark n from the basic block n. To
illustrate, the block flagger 804 erases the invalid mark n
from one or more memory addresses of the cache 102 in
which the invalid mark n is stored. Upon removing the
invalid mark n, the block flagger 804 sends a command to
the block dispatcher 302 to execute the basic block n, and
upon receiving the command, in the operation 866, the block
dispatcher 302 runs the basic block n. As an example, the
block dispatcher 302 does not execute the basic block n until
the command to execute the basic block n is received from
the block flagger 804.

On the other hand, upon determining that the basic block
n is not valid, in an operation 872 of the method 800, an
additional basic block, having the same functionality or
operation as the basic block n, is compiled. For example, the
block validator 802 sends a command to the block dis-
patcher 302 to not execute the basic block n and sends an
indication to the block creator 604 that the basic block n is
invalid. Upon receiving the indication, the block creator 604
recompiles the basic block n. To illustrate, the block creator
604 compiles the additional basic block in the same manner
as that of compiling the basic block n from one of the more
of the emulated PU code instructions 1 through M stored in
the memory device 412 except that the additional basic
block is compiled from an additional set of emulated PU
code instructions, such as one or more of the emulated PU
code instructions 1 through M, stored within a memory
device of an additional legacy machine. The additional
legacy machine is different from the legacy machine that
includes the memory device 412. Also, the additional set of
emulated PU code instructions are of the same game title GN
as that of the game code gcN. As another illustration, the
block creator 604 compiles the additional basic block in the
same manner as that of compiling the basic block n from one
of the more of the emulated PU code instructions 1 through
M stored in the memory device 412 except that the addi-
tional basic block is compiled from an additional set of
emulated PU code instructions, such as one or more of the
emulated PU code instructions 1 through M, stored within
different memory addresses of the memory device 412 than
memory addresses, of the memory device 412, at which the

20

25

40

45

60

65

28

emulate PU code instructions 1 through M are stored. As yet
another illustration, the block creator 604 compiles the
additional basic block in the same manner as that of com-
piling the basic block n from one of the more of the emulated
PU code instructions 1 through M stored in the memory
device 412 except that the additional basic block is compiled
from an additional set of emulated PU code instructions,
such as one or more of the emulated PU code instructions 1
through M, stored within a different memory device than the
memory device 412.

The additional basic block is sent from the block creator
604 to the block dispatcher 302 for execution. For example,
the block dispatcher 302 executes the additional basic block
to generate a portion of an additional virtual environment,
such as the virtual environment 452 (FIG. 4B). To illustrate,
the block dispatcher 302 executes the additional basic block
to generate a portion of an image frame, which includes
additional virtual environment data, such as a position and
an orientation of the virtual object 454, the parameter of the
virtual object 454, positions and orientations of other virtual
objects in the virtual environment 452, and the parameter of
the other virtual objects in the additional virtual environ-
ment. The block dispatcher 302 provides the image frame to
the GPU of the emulation processor system 409 to display,
such as render, the additional virtual environment on the
display screen of the display device 410.

It should be noted that although the method 850 is
illustrated with reference to the basic block n and the
additional basic block, the method 850 is equally applicable
to other basic blocks 1 through (n-1) and more additional
basic blocks, which are generated in the same manner in
which the additional basic block is generated.

In one embodiment, the set of emulated PU code instruc-
tions 1 through M are stored in a first set of one or more
memory devices, located outside the legacy machine, and
the additional set of emulated PU code instructions is stored
in a second set of one or more memory devices, located
outside the additional legacy machine.

FIG. 9A is a diagram to illustrate an embodiment of a
legacy machine 900. An example of the legacy machine 900
is the PS1™ or the PS2™. The legacy machine 900 includes
alegacy CPU 902, a legacy GPU 904, a memory device 906,
and a CD-ROM drive 908. The memory device 906 is an
example of the memory device 412 (FIG. 4A). An example
of the legacy CPU 902 is a 32-bit CPU that can process at
most 32 bits during one clock cycle. Also, example of the
legacy GPU 904 is a 32-bit GPU that can process at most 32
bits during one clock cycle. An example of the memory
device 906 is a 2 megabyte (MB) RAM.

The legacy CPU 902 and the legacy GPU 904 are coupled
to the memory device 906, which is coupled to the CD-ROM
drive 908. The emulated PU code 106 is stored within the
memory device 906.

The legacy CPU 902 or the legacy GPU 904 access the
emulated PU code 106 from the memory device 906 and
processes the emulated PU code 106. The CD-ROM drive
908 receives a CD-ROM, which includes the updated
instructions or the corrupted code. The updated instructions
or the corrupted code can be transferred from the CD-ROM
to the memory device 906 by the legacy CPU 902.

In one embodiment, the legacy machine 900 excludes a
cache. In an embodiment, the legacy machine 900 includes
a cache of limited capacity, such as a 4 kilobyte (KB) cache.

FIG. 9B is a diagram to illustrate an embodiment of an
updated machine 920. An example of the updated machine
920 is the PS4™ or the PS5™. The updated machine 920
includes a CPU 922, a GPU 924, a memory system 926, and

US 11,360,750 B1

29

a cache 928, which is an example of the cache 102 (FIG. 1).
The game console 402 (FIG. 4B) is an example of the
updated machine 920. As an example, the CPU 922 includes
two quad-core modules and each module can process 64 bits
during each clock cycle. Each core has a 32 kilobyte (KB)
cache. Another example of the CPU 922 is a 64-bit CPU that
can process at most 64 bits during one clock cycle. As an
example, the GPU 924 has 1152 cores and each core can
process 64-bits during one clock cycle. As another example,
the legacy GPU 924 is a 64-bit GPU that can process at most
64 bits during one clock cycle.

The CPU 922 and the GPU 924 are coupled to the
memory system 906. As an example, the emulated PU code
106 is stored within the legacy memory system 906. An
example of the memory system 926 includes is a hard drive
that provides a storage of 500 gigabytes (GB), or 2 terabytes
(TB). The CPU 922, the GPU 924, the cache 928, and the
memory system 926 are coupled to each other via a bus 930.

The CPU 922 or the GPU 924 accesses the cache 928 first
before accessing the memory system 926. Upon determining
that the cache 928 does not data that is requested by the CPU
922 or the GPU 924, the CPU 922 or the GPU 924 accesses
the memory system 926.

It should be noted that in one embodiment, the game code
geN cannot be executed by the CPU 922 or the GPU 924 but
can be executed by the legacy CPU 902 or the legacy GPU
904. Also, the basic blocks 1 through n can be executed by
the CPU 922 or the GPU 924 but cannot be executed by the
legacy CPU 902 or the legacy GPU 904.

In one embodiment, the cache 928 is located within the
CPU 922.

In an embodiment, the cache 928 is located within the
GPU 924.

In one embodiment, the cache 928 is located within the
CPU 922 and another cache, such as the cache 102, is
located within the GPU 924.

FIG. 10A is a diagram of an embodiment of a system 1000
to illustrate combining of multiple basic blocks into one
basic block by the basic block compiler 104 (FIG. 1). The
block creator 604 (FIG. 6A) receives the user input 1, such
as a signal indicating that the virtual object 454 (FIG. 4B) be
initiated at the position P1 and the orientation O1 at a level
1 of the legacy game N having the game title GN. Upon
receiving the user input 1, the basic block 1 is generated by
the basic block compiler 104 based on the emulated PU code
instruction 1 to service the user input 1. Similarly, the block
creator 604 receives the user input 2, such as a signal
indicating that the virtual object 454 be initiated at the
position P1 and the orientation O1 at a level 2 of the legacy
game N. Upon receiving the user input 2, the basic block 2
is generated by the basic block compiler 104 based on the
emulated PU code instruction 2 to service the user input 2.

When a user input 3, such as a signal indicating that the
virtual object 454 be initiated at the position P1 and the
orientation O1 at a level 3 of the legacy game N, is received,
the block compiler 104 identifies the basic blocks 1 and 2 as
servicing the user input 3. Upon identifying so, the block
creator 604 integrates, such as combines, the basic blocks 1
and 2 into a single basic block, such as the basic block 1 or
the basic block 2. The integration saves memory space in the
cache 102 and also increases efficiency in accessing the
single basic block instead of accessing the basic block 1 and
the basic block 2.

The block creator 604 further generates a value in a
pointer of the cache 102. An example of a pointer, as used
herein, is a register. The pointer indicates to the block
dispatcher 302 to execute the single basic block when a user

20

25

40

45

60

65

30

input for servicing the basic block 1 or the basic block 2 is
received. At a time the block dispatcher 302 is to execute the
basic block 1 or 2, the block dispatcher 302 accesses the
pointer and executes the single basic block instead of the
basic block 1 or 2.

FIG. 10B is a diagram of an embodiment of a system 1020
to illustrate modification of one or more of the basic blocks
1 through n. The system 1020 includes a block interface
1022, the cache 102, and the block dispatcher 302. As an
example, the basic block n includes the operation n of dead
reckoning. As another example, the basic block n includes
the operation n of bouncing back a crosshair from an edge
of the display screen of the display device 410 (FIG. 4B). An
example of the block interface 1022 is an ASIC, or a PLD,
or a microprocessor, or a microcontroller, or a computer
program, or a portion of a computer program. The block
interface 1022 is coupled to the cache 102.

The block interface 1022 provides access to the user to
one or more of the basic blocks 1 through n stored in the
cache 102. For example, the user selects one or more buttons
on an input device, such as a keyboard or a mouse or a
keypad, to generate a modification input 1024. As an
example, the modification input 1024 includes one or more
user instructions in the form of source code to modify the
basic block n. To illustrate, the modification input 1024
includes a user instruction to remove the operation n of dead
reckoning from the basic block n. As another example, the
modification input 1024 includes an instruction to change
the operation n to include that the cross hair slides off the
edge of the display screen of the display device 410 and is
displayed at an opposite edge of the display screen of the
display device 410. The opposite edge is diagonally opposite
to the edge at which the cross hair slides off.

The input device is coupled to the block interface 1022.
The modification input 1024 is sent from the input device to
the block interface 1022 to modify the basic block n to
output a modified basic block n. As an example, the modified
basic block n does not include the operation of dead reck-
oning. As another example, the modified basic block n
includes the operation n of sliding off the crosshair from the
edge to the opposite edge. As yet another example, the
modified basic block n includes an operation of calculating
a number of clock cycles of execution of the operation n and
storing the number in the basic block n. To illustrate, the
number of cycles is stored in memory addresses of the cache
102 in which the basic block 1 is stored. The operation of
calculating the number of clock cycles is executed by the
block dispatcher 302 (FIG. 3) in addition to executing the
operation n. The block dispatcher 302 calculates the number
of clock cycles upon execution of the operation n and stores
the number in the basic block n.

The block creator 604 further generates a value in a
pointer within the cache 102, and the pointer indicates to the
block dispatcher 302 to execute the modified basic block n
when a user input for servicing the basic block n is received.
At a time the block dispatcher 302 is to execute the basic
block n, the block dispatcher 302 accesses the pointer and
executes the modified basic block n instead of the basic
block n.

FIG. 10C is a diagram of an embodiment of a system 1030
to illustrate combining of a basic block created based on a
subroutine with a basic block generated based on an emu-
lated PU code instruction, which calls the subroutine. The
block creator 604 (FIG. 6A) receives the user input 1, such
as a signal indicating a change in a position and/or an
orientation of the virtual object 454 (FIG. 4B) that results in
a destruction of the virtual object 454. Upon receiving the

US 11,360,750 B1

31

user input 1, the basic block 1 is generated by the basic block
compiler 104 based on the emulated PU code instruction 1
to service the user input 1. The emulated PU code instruction
1 includes a function call to a subroutine 1. As such, upon
receiving the user input 1, the basic block 2 is generated by
the basic block compiler 104 based on the subroutine 1,
which is an example of the emulated PU code instruction 2.
As an example, the basic block 2 includes the operation 2 of
regenerating the virtual object 454 at the position P1 and the
orientation O1.

When a user input 2, such as a signal indicating a change
in a position and/or an orientation of the virtual object 454
(FIG. 4B) that results in a destruction of the virtual object
454, is received, the block compiler 104 identifies the basic
blocks 1 and 2 as servicing the user input 2. Upon identi-
fying so, the block creator 604 integrates, such as combines,
the basic blocks 1 and 2 into a single basic block, such as the
basic block 1 or the basic block 2. For example, upon
receiving the user input 2, the destruction of the virtual
object 454 and the regeneration of the virtual object 454 are
triggered. When the basic blocks 1 and 2 are combined, the
subroutine 1 is skipped.

The block creator 604 further generates a value and stores
the value in a pointer within the cache 102. The value
indicates to the block dispatcher 302 to execute the single
basic block when a user input for servicing the basic blocks
1 and 2 is received. At a time the block dispatcher 302 is to
execute the basic blocks 1 and 2, the block dispatcher 302
accesses the pointer and executes the single basic block
instead of the basic block 1.

FIG. 10D is a diagram of an embodiment of a system 1040
to illustrate an insertion of a basic block between two basic
blocks. The system 1040 includes the block interface 1022
and the cache 102. After the basic blocks 1 and 2 are stored
in the cache 102, a modification input 1042 is received from
the user via the input device. As an example, the modifica-
tion input 1042 is a signal including a source code that
defines a basic block 1.1, which includes a source register
address 1.1 within the cache 102, a destination register
address 1.1 within the cache 102, and an operation 1.1 to be
performed on data stored within the source register address
1.1, or on the destination register address 1.1, or both the
source and destination register addresses 1.1. Examples of
the operation 1.1 include jump, store, load, branch, and an
arithmetic operation.

The modification input 1042 further includes an indica-
tion of a location of the basic block 1.1 and an association
of the basic block 1.1 with the basic block 1 or 2. For
example, the modification input 1042 includes a signal
indicating that the basic block 1.1 is to be inserted between
the basic blocks 1 and 2 in the cache 102 and a signal
indicating that the basic block 1.1 is to be linked to the basic
blocks 1 and/or 2. To illustrate, the basic block 1.1 is inserted
to include a location, such as one or more register addresses,
in the cache 102, for receiving an invalid mark 2 of the basic
block 2. As another illustration, the basic block 1.1 is
inserted to include a location, such as one or more register
addresses in the cache 102, for receiving a number of cycles
of execution of the basic block 2. In the illustration, the
block interface 1022 receives the modification input 1042,
identifies, from the modification input 1042 that the basic
block 1.1 is to be inserted between the basic blocks 1 and 2,
and inserts the basic block 1.1 between the basic blocks 1
and 2. As another illustration, the block interface 1022
determines that the basic block 1.1 includes an operation for
unlocking a level in the legacy game N having the game title
GN. The level is between a first level identified in an

—_

5

30

40

45

W

5

32

operation of the basic block 1 and a second level identified
in an operation of the basic block 2. The first and second
levels are in the legacy game N having the game title GN.
The level inserted between the first and second levels is not
a part of the game code gcN but is a new level of the legacy
game N. An example of the level inserted between the first
and second levels is a level in which the virtual object 454
shoots a laser gun instead of missiles.

In addition, the block interface 1022 identifies from the
modification input 1042 a value of a pointer and stores the
value the cache 102. As an example, the value of the pointer
indicates that execution of the basic block 1.1 occur imme-
diately before execution of the basic block 2. When the
block dispatcher 302 is to execute the basic block 2, the
block dispatcher 302 identifies the value within the pointer
to point the basic block 1.1, and executes the basic block 1.1
immediately before executing the basic block 2. As another
example, the value of the pointer indicates that execution of
the basic block 1.1 occur immediately after execution of the
basic block 2. After the block dispatcher 302 executes the
basic block 2, the block dispatcher 302 identifies the value
within the pointer to point the basic block 1.1, and executes
the basic block 1.1 immediately after executing the basic
block 2.

FIG. 10E is a diagram of an embodiment of a system 1050
to illustrate a switch in order of execution of basic blocks.
The system 1050 includes the cache 102 and the block
interface 1022. The cache 102 includes a value within a
pointer of the cache 102 and the value indicates that the
basic block 2 be executed after executing the basic block 1.
The user uses the input device to provide a modification
input 1052, which includes a signal indicating that an order
of execution of the basic blocks 1 and 2 be switched. Upon
receiving the signal, the block interface 1022 changes a
value of the pointer in the cache 102 to indicate that the basic
block 1 be executed after executing the basic block 2.

FIG. 11A is a flowchart of an embodiment of a method
1100 to illustrate use of the real count of the number of
cycles stored in the basic block n. The method 1100 includes
the operation 662 of executing the basic block n. In an
operation 1102 of the method 1100, the block dispatcher 302
(FIG. 3) counts the number of cycles of execution, in the
operation 662, of the basic block n to generate a first count.
The block dispatcher 302, in an operation 1104 of the
method 1100, stores the first count in the basic block n. For
example, the block dispatcher 302 writes the real count to a
register having one of register addresses, within the cache
102, that are assigned to the basic block n.

In an operation 1106 of the method 1100, the block creator
604 (FIG. 6A) determines whether the same basic block n is
to be executed again. For example, the block creator 604
determines whether a user input for servicing the same basic
block n is received from the client device. The block creator
604 continues to determine whether the user input for
servicing the same basic block n is received until the user
input is received.

FIG. 11B is a continuation of the flowchart of the method
1100 of FIG. 11A. Upon determining that the user input for
servicing the basic block n is received again, the basic block
n is executed again by the block dispatcher 304. In an
operation 1108 of the method 1100, the block dispatcher 304
counts a number of cycles of execution, in the operation
1106, of the basic block n, to calculate a second count.

The block dispatcher 304 determines whether the second
count is within a pre-determined limit from the first count in
an operation 1108 of the method 1100. The pre-determined
limit is stored in the cache 102. In response to determining

US 11,360,750 B1

33

that the second count is not within the pre-determined limit
from the first count, in an operation 1110 of the method
1100, the block dispatcher 304 generates a notice. For
example, when the block dispatcher 304 is located within the
game console 402 (FIG. 4A), the GPU 924 (FIG. 9B) of the
game console 402 displays a representation of the notice on
the display device 410 (FIG. 4A) of the client device and
sends the notice and via the computer network 408 to the
server system 404 to notify the server system 404. As
another example, when the block dispatcher 304 is located
within the server system 404 (FIG. 4B), the block dispatcher
304 generates the notice and a GPU of the server system 404
displays the representation of the notice on a display device
that is coupled to the server system 404. On the other hand,
determining that the second count is within the pre-deter-
mined limit from the first count, in an operation 1112 of the
method 1100, the block dispatcher 304 does not trigger the
notice.

FIG. 12 is a diagram of an embodiment of a system 1200
to illustrate a transfer of the basic blocks 1 through n from
a first client device to a second client device. The system
1200 includes the game console 402, the computer network
408, the server system 404, a game console 1202, and a
display device 1204. The game console 1202 is similar to the
game console 402. For example, both the game consoles 402
and 1202 are PS4s™, or both the game consoles 402 and
1202 are PS5s™, or the game console 402 is a PS4™ and
the game console 1202 is a PS5™, or the game console 402
is a PS5™ and the game console 1202 is a PS4™. As another
example, the game console 1202 is not a legacy machine.
Also, the display device 1204 is similar to the display device
410 of FIG. 4A. For example, the display device 410 is an
HMD or a television or a smart television or a computer
monitor.

The game console 402 includes a network interface
controller 1212. The game console 1202 includes an emu-
lated processor system 1206, a cache 1208, and a network
interface controller 1210. The emulated processor system
1206 has the same structure and same functionality as that
of the emulated processor system 409. Also, the cache 1208
has the same structure and the same functionality as that of
the cache 102. The emulated processor system 1206, the
cache 1208, and the network interface controller 1210 are
coupled to each other via a bus 1218.

Once the basic blocks 1 through n are stored in the cache
102, the basic block compiler 104 of the emulated processor
system 409 sends the basic blocks 1 through n to the network
interface controller 1212. The network interface controller
1212 applies the network communication protocol to the
basic blocks 1 through n to generate one or more packets
embedding the basic blocks 1 through n and sends the one
or more packets via the computer network 408 to the server
system 404. Upon receiving the one or more packets, the
network interface controller of the server system 404 applies
the network communication protocol to the one or more
packets to extract the basic blocks 1 through n for the legacy
game N having the game title GN and stores the basic blocks
1 through n in one or more memory devices of the server
system 404.

A user 2 uses a hand-held controller 1212 to select one or
more buttons on the hand-held controller 1212 to log into
his/her user account that is assigned to the user 2 by the
server system 404. The user 2 logs into his/her user account
when a user ID2 and a password are authenticated by the
server system 404. Once the user 2 logs into his/her user
account, the user 2 can access multiple game titles, such as

20

25

35

40

45

60

65

34

the game title G1, the game title Ga, the game title G2, and
so on until the game title GN.

Upon logging into the user account 2, the user 2 uses the
hand-held controller 1212 to select one or more buttons on
the hand-held controller 1212 to generate a user input 1214.
The user input 1214 is generated upon selection of the
legacy game N having the title GN displayed on the display
device 1204. When the user input 1214 is generated, the
cache 1208 does not include the basic blocks 1 through n.
For example, upon receiving the user input 1214, a basic
block compiler of the emulated processor system 1206
checks the cache 102 to determine whether the cache 102
includes one or more of the basic blocks 1 through n of the
game code GCN for servicing the user input 1214. Upon
determining that the cache 102 does not include the one or
more of the basic blocks 1 through n for servicing the user
input 1214, the emulated processor system 1206 generates a
request 1220 for the one or more of the basic blocks 1
through n and sends the request 1220 to the network
interface controller 1210.

Upon receiving the request 1220, the network interface
controller 1210 generates one or more packets embedding
the request 1220 by applying the network communication
protocol to the request 1220, and sends the one or more
packets via the computer network 408 to the server system
404. The network interface controller of the server system
404 receives the one or more packets and applies the
network communication protocol to extract the request 1220
from the one or more packets. A processor of the server
system 404 analyzes the request 1220 to identify that the
basic blocks 1 through n are requested.

In response to determining that the basic blocks 1 through
n are requested, the server system 404 accesses the basic
blocks 1 through n stored in the one or more memory
devices of the server system 404 and provides the basic
blocks 1 through n to the network interface controller of the
server system 404. The network interface controller of the
server system 404 applies the network communication pro-
tocol to generate one or more packets embedding the basic
blocks 1 through n and sends the one or more packets via the
computer network 408 to the game console 1202.

The network interface controller 1210 of the game con-
sole 1202 receives the one or more packets having the basic
blocks 1 through n, applies the network communication
protocol to extract the basic blocks 1 through n from the one
or more packets, and sends the basic blocks 1 through n to
the emulated processor system 1206. The basic block com-
piler of the emulated processor system 1206 stores the basic
blocks 1 through n in the cache 1208.

When a user input 1224 is received from the hand-held
controller 1212 during a play of the game having the game
title GN, the basic block compiler of the emulated processor
system 1206 identifies one or more of the basic blocks 1
through n within the cache 1208 for servicing the user input
1224. A block dispatcher of the emulated processor system
1206 executes the one or more of the basic blocks 1 through
n for servicing the user input 1224. In this manner, once the
basic blocks 1 through n are compiled by the emulated
processor system 409, the basic blocks 1 through n do not
need to be compiled by the emulated processor system 1206
but can be accessed by the emulated processor system 1206
from the server system 404.

FIG. 13 is a flow diagram conceptually illustrating vari-
ous operations which are performed for streaming a cloud
video game to a client device, in accordance with imple-
mentations of the disclosure. Examples of the client device
include a game controller, a smart phone, a game console,

US 11,360,750 B1

35

and a computer. A game server 1302 executes the game
program 458 (FIG. 4B), such as a video game, and generates
raw (uncompressed) video 1304 and audio 1306. The virtual
environment 452 (FIG. 4A) and audio output during pre-
sentation of the virtual environment 452 are examples of the
video 1004 and audio 1306. The game server 1302 is an
example of the server system 404 (FIG. 4A). The video 1304
and audio 1306 are captured and encoded for streaming
purposes, as indicated at reference 1308 in the illustrated
diagram. The encoding provides for compression of the
video and audio streams to reduce bandwidth usage and
optimize the gaming experience. Examples of encoding
formats include H.265/MPEG-H, H.264/MPEG-4, H.263/
MPEG-4, H.262/MPEG-2, WMV, VP6/7/8/9, etc.

Encoded audio 1310 and encoded video 1312 are further
packetized into network packets, as indicated at reference
numeral 1314, for purposes of transmission over a computer
network 1320, which is an example of the computer network
408 (FIG. 4A). In some embodiments, the network packet
encoding process also employs a data encryption process,
thereby providing enhanced data security. In the illustrated
implementation, audio packets 1316 and video packets 1318
are generated for transport over the computer network 1320.

The game server 1302 additionally generates haptic feed-
back data 1322, which is also packetized into network
packets for network transmission. In the illustrated imple-
mentation, haptic feedback packets 1324 are generated for
transport over the computer network 1320.

The foregoing operations of generating the raw video and
audio and the haptic feedback data are performed on the
game server 1302 of a data center, and the operations of
encoding the video and audio, and packetizing the encoded
audio/video and haptic feedback data for transport are
performed by the streaming engine of the data center. As
indicated, the audio, video, and haptic feedback packets are
transported over the computer network 1320. As indicated at
reference 1326, the audio packets 1316, video packets 1318,
and haptic feedback packets 1324, are disintegrated, e.g.,
parsed, etc., by the client device to extract encoded audio
1328, encoded video 1330, and haptic feedback data 1322 at
the client device from the network packets. If data has been
encrypted, then the data is also decrypted. The encoded
audio 1328 and encoded video 1330 are then decoded by the
client device, as indicated at reference 1334, to generate
client-side raw audio and video data for rendering on a
display device 1340 of the client device. The haptic feed-
back data 1322 is processed by a processor of the client
device to produce a haptic feedback effect at a controller
device 1324 or other interface device, e.g., the HMD, etc.,
through which haptic effects can be rendered. The controller
device 1324 is an example of a hand-held controller of the
client device. One example of a haptic effect is a vibration
or rumble of the controller device 1324.

It will be appreciated that a video game is responsive to
player inputs, and thus, a similar procedural flow to that
described above for transmission and processing of player
input, but in the reverse direction from client device to
server, is performed. As shown, the controller device 1324
or another input component, e.g., a body part of the user 1,
etc., or a combination thereof generates input data 1348. The
input data 1348 is packetized at the client device for trans-
port over the computer network 1320 to the data center.
Input data packets 1346 are unpacked and reassembled by
the game server 1302 to define the input data 1348 on the
data center side. The input data 1348 is fed to the game
server 1302, which processes the input data 1348 to generate
a game state of the legacy game N.

20

25

40

45

60

65

36

During transport via the computer network 1320 of the
audio packets 1316, the video packets 1318, and haptic
feedback packets 1324, in some embodiments, the transmis-
sion of data over the computer network 1320 is monitored to
ensure a quality of service. For example, network conditions
of the computer network 1320 are monitored as indicated by
reference 1350, including both upstream and downstream
network bandwidth, and the game streaming is adjusted in
response to changes in available bandwidth. That is, the
encoding and decoding of network packets is controlled
based on present network conditions, as indicated by refer-
ence 1352.

FIG. 14 is a block diagram of an embodiment of a game
console 1400 that is compatible for interfacing with a
display device of a client device and is capable of commu-
nicating via the computer network 1320 (FIG. 13) with a
game hosting system, such as the server system 404 (FIG.
4A). The game console 1400 is an example of the game
console 402 (FIG. 4A). The game console 1400 is located
within the data center or is located at a location at which a
player, such as the user 1 or 2, is located. In some embodi-
ments, the game console 1400 is used to execute a game that
is displayed on an HMD. The game console 1400 is provided
with various peripheral devices connectable to the game
console 1400. The game console 1400 has a cell processor
1428, a dynamic random access memory (XDRAM) unit
1426, a Reality Synthesizer graphics processor unit 1430
with a dedicated video random access memory (VRAM)
unit 1432, and an input/output (I/O) bridge 1434. The game
console 1400 also has a Blu Ray® Disk read-only memory
(BD-ROM) optical disk reader 1440 for reading from a disk
1440q and a removable slot-in hard disk drive (HDD) 1436,
accessible through the I/O bridge 1434. Optionally, the game
console 1400 also includes a memory card reader 1438 for
reading compact flash memory cards, memory Stick®
memory cards and the like, which is similarly accessible
through the I/O bridge 1434. The I/O bridge 1434 also
connects to USB 2.0 ports 1424, a gigabit Ethernet port
1422, an IEEE 802.11b/g wireless network (Wi-Fi™) port
1420, and a Bluetooth® wireless link port 1418 capable of
supporting Bluetooth connections.

In operation, the I/O bridge 1434 handles all wireless,
USB and Ethernet data, including data from a game con-
troller and from the HMD 1405. For example, when the
player is playing the legacy game N generated by execution
of a portion of a game code, such as the game code GCN,
the 1/O bridge 1434 receives input data or an input signal,
described herein, from a game controller 1342 (FIG. 13) or
1403 and/or from the HMD 1405 via a Bluetooth link and
directs the input data to the cell processor 1428, which
updates a current state of the legacy game N accordingly. As
an example, a camera within the HMD 1405 captures a
gesture of the player to generate an image representing the
gesture. The game controller 1342 is an example of the
hand-held controller 406 (FIG. 4A).

The wireless, USB and Ethernet ports also provide con-
nectivity for other peripheral devices in addition to the game
controllers 1342 and 1403 and the HMD 1405, such as, for
example, a remote control 1404, a keyboard 1406, a mouse
1408, a portable entertainment device 1410, such as, e.g., a
Sony Playstation Portable® entertainment device, etc., a
video camera, such as, e.g., an EyeToy® video camera 1412,
etc., a microphone headset 1414, and a microphone 1415.
The portable entertainment device 1410 is an example of a
game controller. In some embodiments, such peripheral
devices are connected to the game console 1400 wirelessly,
for example, the portable entertainment device 1410 com-

US 11,360,750 B1

37

municates via a Wi-Fi™ ad-hoc connection, whilst the
microphone headset 1414 communicates via a Bluetooth
link.

The provision of these interfaces means that the game
console 1400 is also potentially compatible with other
peripheral devices such as digital video recorders (DVRs),
set-top boxes, digital cameras, portable media players, Voice
over Internet protocol (IP) telephones, mobile telephones,
printers and scanners.

In addition, a legacy memory card reader 1416 is con-
nected to the game console 1400 via the USB port 1424,
enabling the reading of memory cards 1448 of a kind used
by the game console 1400. The game controllers 1342 and
1403, and the HMD 1405 are operable to communicate
wirelessly with the game console 1400 via the Bluetooth
link 1418, or to be connected to the USB port 1424, thereby
also receiving power by which to charge batteries of the
game controller 1342 and 1403 and the HMD 1405. In some
embodiments, each of the game controllers 1342 and 1403,
and the HMD 1405 includes a memory, a processor, a
memory card reader, permanent memory, such as, e.g., flash
memory, etc., light emitters such as, e.g., an illuminated
spherical section, light emitting diodes (LEDs), or infrared
lights, etc., microphone and speaker for ultrasound commu-
nications, an acoustic chamber, a digital camera, an internal
clock, a recognizable shape, such as, e.g., a spherical section
facing the game console 1400, and wireless devices using
protocols, such as, e.g., Bluetooth, Wi-Fi, etc.

The game controller 642 is a controller designed to be
used with two hands by a player, such as the player 1 or 2
or 3 or 4, and the game controller 1403 is a single-hand
controller with an attachment. The HMD 1405 is designed to
fit on top of a head and/or in front of eyes of the player. In
addition to one or more analog joysticks and conventional
control buttons, each game controller 1342 and 1403 is
susceptible to three-dimensional location determination.
Similarly, the HMD 1405 is susceptible to three-dimensional
location determination. Consequently, in some embodi-
ments, gestures and movements by the player that uses the
game controller 1342 and 1403 and of the HMD 1405 are
translated as inputs to a game in addition to or instead of
conventional button or joystick commands. Optionally,
other wirelessly enabled peripheral devices, such as, e.g., the
Playstation™ Portable device, etc., are used as a controller.
In the case of the Playstation™ Portable device, additional
game or control information, e.g., control instructions or
number of lives, etc., is provided on a display screen of the
device. In some embodiments, other alternative or supple-
mentary control devices are used, such as, e.g., a dance mat
(not shown), a light gun (not shown), a steering wheel and
pedals (not shown), bespoke controllers, etc. Examples of
bespoke controllers include a single or several large buttons
for a rapid-response quiz game (also not shown).

The remote control 1404 is also operable to communicate
wirelessly with the game console 1400 via the Bluetooth
link 1418. The remote control 1404 includes controls suit-
able for the operation of the Blu Ray™ Disk BD-ROM
reader 1440 and for navigation of disk content.

The Blu Ray™ Disk BD-ROM reader 1440 is operable to
read CD-ROMs compatible with the game console 1400, in
addition to conventional pre-recorded and recordable CDs,
and so-called Super Audio CDs. The Blu Ray™ Disk
BD-ROM reader 1440 is also operable to read digital video
disk-ROMs (DVD-ROMs) compatible with the game con-
sole 1400, in addition to conventional pre-recorded and
recordable DVDs. The Blu Ray™ Disk BD-ROM reader
1440 is further operable to read BD-ROMs compatible with

—_

0

—_

5

w

0

W

5

65

38
the game console 1400, as well as conventional pre-recorded
and recordable Blu-Ray Disks.

The game console 1400 is operable to supply audio and
video, either generated or decoded via the Reality Synthe-
sizer graphics unit 1430, through audio connectors 1450 and
video connectors 1452 to a display and sound output device
1442, such as, e.g., a monitor or television set, etc., having
a display screen 1444 and one or more loudspeakers 1446,
or to supply the audio and video via the Bluetooth® wireless
link port 1418 to the display device of the HMD 1405. The
audio connectors 1450, in various embodiments, include
conventional analogue and digital outputs whilst the video
connectors 1452 variously include component video,
S-video, composite video, and one or more High Definition
Multimedia Interface (HDMI) outputs. Consequently, video
output may be in formats such as phase alternating line
(PAL) or National Television System Committee (NTSC), or
in 2220p, 10801 or 1080p high definition. Audio processing,
e.g., generation, decoding, etc., is performed by the cell
processor 1408. An operating system of the game console
1400 supports Dolby® 5.1 surround sound, Dolby® Theatre
Surround (DTS), and the decoding of 7.1 surround sound
from Blu-Ray® disks. The display and sound output device
1442 is an example of the display device 410 (FIG. 4A).

In some embodiments, a video camera, e.g., the video
camera 1412, etc., comprises a single charge coupled device
(CCD), an LED indicator, and hardware-based real-time
data compression and encoding apparatus so that com-
pressed video data is transmitted in an appropriate format
such as an intra-image based motion picture expert group
(MPEG) standard for decoding by the game console 1400.
An LED indicator of the video camera 1412 is arranged to
illuminate in response to appropriate control data from the
game console 1400, for example, to signify adverse lighting
conditions, etc. Some embodiments of the video camera
1412 connect to the game console 1400 via a USB, Blu-
etooth or Wi-Fi communication port. Various embodiments
of a video camera include one or more associated micro-
phones and also are capable of transmitting audio data. In
several embodiments of a video camera, the CCD has a
resolution suitable for high-definition video capture. In use,
images captured by the video camera are incorporated
within a game or interpreted as game control inputs. In
another embodiment, a video camera is an infrared camera
suitable for detecting infrared light.

In various embodiments, for successful data communica-
tion to occur with a peripheral device, such as, for example,
a video camera or remote control via one of the communi-
cation ports of the game console 1400, an appropriate piece
of software, such as, a device driver, etc., is provided.

In some embodiments, the aforementioned system
devices, including the game console 1400, the game con-
troller 1342 (FIG. 13) or 1403, and the HMD 1405 enable
the HMD 1405 to display and capture video of an interactive
session of the game. The system devices initiate an interac-
tive session of the game, the interactive session defining
interactivity between the player 1 and other players and the
game. The system devices further determine an initial posi-
tion and orientation of the game controller 1342 (FIG. 13) or
1303, and/or the HMD 1405 operated by a player, such as
the player 1, or 2, or 3, or 4. The game console 1400
determines a current state of a game based on the interac-
tivity between a player, such as the player 1, or 2, or 3, or
4, and the game. The system devices track a position and
orientation of the game controller 642 (FIG. 6) or 1403
and/or the HMD 1405 during an interactive session of the
player with the legacy game N. The system devices generate

US 11,360,750 B1

39

a spectator video stream of the interactive session based on
a current state of the legacy game N and the tracked position
and orientation of the HHC and/or the HMD 1405. In some
embodiments, the HHC renders the spectator video stream
on a display screen of the HHC. In various embodiments, the
HMD 1405 renders the spectator video stream on a display
screen of the HMD 1405.

With reference to FIG. 15, a diagram illustrating compo-
nents of an HMD 1502 is shown. The HMD 1502 is an
example of the HMD 1405 (FIG. 14). The HMD 1502
includes a processor 1500 for executing program instruc-
tions. A memory device 1502 is provided for storage pur-
poses. Examples of the memory device 1502 include a
volatile memory, a non-volatile memory, or a combination
thereof. A display device 1504 is included which provides a
visual interface, e.g., display of image frames generated
from save data, etc., that the player views. A battery 1506 is
provided as a power source for the HMD 1502. A motion
detection module 1508 includes any of various kinds of
motion sensitive hardware, such as a magnetometer 1510, an
accelerometer 1512, and a gyroscope 1514.

An accelerometer is a device for measuring acceleration
and gravity induced reaction forces. Single and multiple axis
models are available to detect magnitude and direction of the
acceleration in different directions. The accelerometer is
used to sense inclination, vibration, and shock. In one
embodiment, three accelerometers 1512 are used to provide
the direction of gravity, which gives an absolute reference
for two angles, e.g., world-space pitch and world-space roll,
etc.

A magnetometer measures a strength and a direction of a
magnetic field in a vicinity of the HMD 1502. In some
embodiments, three magnetometers 1510 are used within the
HMD 1502, ensuring an absolute reference for the world-
space yaw angle. In various embodiments, the magnetom-
eter is designed to span the earth magnetic field, which is
+80 microtesla. Magnetometers are affected by metal, and
provide a yaw measurement that is monotonic with actual
yaw. In some embodiments, a magnetic field is warped due
to metal in the real-world environment, which causes a warp
in the yaw measurement. In various embodiments, this warp
is calibrated using information from other sensors, e.g., the
gyroscope 1514, a camera 1516, etc. In one embodiment, the
accelerometer 1512 is used together with magnetometer
1510 to obtain the inclination and azimuth of the HMD
1502.

A gyroscope is a device for measuring or maintaining
orientation, based on the principles of angular momentum.
In one embodiment, instead of the gyroscope 1514, three
gyroscopes provide information about movement across the
respective axis (X, y and z) based on inertial sensing. The
gyroscopes help in detecting fast rotations. However, the
gyroscopes, in some embodiments, drift overtime without
the existence of an absolute reference. This triggers resetting
the gyroscopes periodically, which can be done using other
available information, such as positional/orientation deter-
mination based on visual tracking of an object, accelerom-
eter, magnetometer, etc.

The camera 1516 is provided for capturing images and
image streams of the real-world environment, e.g., room,
cabin, natural environment, etc., surrounding the player. In
various embodiments, more than one camera is included in
the HMD 1502, including a camera that is rear-facing, e.g.,
directed away from the player, when the player is viewing
the display of the HMD 1502, etc., and a camera that is
front-facing, e.g., directed towards the player when the
player is viewing the display of the HMD 1502, etc. Addi-

20

25

30

40

45

60

65

40

tionally, in several embodiments, a depth camera 1518 is
included in the HMD 1502 for sensing depth information of
objects in the real-world environment.

The HMD 1502 includes speakers 1520 for providing
audio output. Also, a microphone 1522 is included, in some
embodiments, for capturing audio from the real-world envi-
ronment, including sounds from an ambient environment,
and speech made by the player, etc. The HMD 1502 includes
a tactile feedback module 1524, e.g., a vibration device, etc.,
for providing tactile feedback to the player. In one embodi-
ment, the tactile feedback module 1524 is capable of causing
movement and/or vibration of the HMD 1502 to provide
tactile feedback to the player.

LEDs 1526 are provided as visual indicators of statuses of
the HMD 1502. For example, an LED may indicate battery
level, power on, etc. A card reader 1528 is provided to enable
the HMD 1502 to read and write information to and from a
memory card. A USB interface 1530 is included as one
example of an interface for enabling connection of periph-
eral devices, or connection to other devices, such as other
portable devices, computers, etc. In various embodiments of
the HMD 1502, any of various kinds of interfaces may be
included to enable greater connectivity of the HMD 1502.

A Wi-Fi™ module 1532 is included for enabling connec-
tion to the Internet via wireless networking technologies.
Also, the HMD 1502 includes a Bluetooth™ module 1534
for enabling wireless connection to other devices. A com-
munications link 1536 is also included, in some embodi-
ments, for connection to other devices. In one embodiment,
the communications link 1536 utilizes infrared transmission
for wireless communication. In other embodiments, the
communications link 1536 utilizes any of various wireless or
wired transmission protocols for communication with other
devices.

Input buttons/sensors 1538 are included to provide an
input interface for the player. Any of various kinds of input
interfaces are included, such as buttons, touchpad, joystick,
trackball, etc. An ultra-sonic communication module 1540 is
included, in various embodiments, in the HMD 1502 for
facilitating communication with other devices via ultra-
sonic technologies.

Bio-sensors 1542 are included to enable detection of
physiological data from the player. In one embodiment, the
bio-sensors 1542 include one or more dry electrodes for
detecting bio-electric signals of the player, through the
player’s skin.

The foregoing components of HMD 1502 have been
described as merely exemplary components that may be
included in HMD 1502. In various embodiments, the HMD
1502 includes or does not include some of the various
aforementioned components.

FIG. 16 illustrates an embodiment of an Information
Service Provider (INSP) architecture. INSPs 1602 delivers a
multitude of information services to the player geographi-
cally dispersed and connected via a computer network 1606,
e.g., a LAN, a WAN, or a combination thereof, etc. The
computer network 1606 is an example of the computer
network 1320 (FIG. 13). An example of the WAN includes
the Internet and an example of the LAN includes an Intranet.
The user 1 operates a client device 1620-1, the user 2
operates another client device 1620-2, and a user 3 operates
yet another client device 1620-3.

In some embodiments, each client device 1620-1, 1620-2,
and 1620-3 includes a central processing unit (CPU), a
display, and an input/output (I/O) interface. Examples of
each client device 1620-1, 1620-2, and 1620-3 include a
personal computer (PC), a mobile phone, a netbook, a tablet,

US 11,360,750 B1

41

a gaming system, a personal digital assistant (PDA), the
game console 1400 and a display device, the HMD 1502
(FIG. 15), the game console 1400 and the HMD 1502, a
desktop computer, a laptop computer, and a smart television,
etc. In some embodiments, the INSP 1602 recognizes a type
of a client device and adjusts a communication method
employed.

In some embodiments, an INSP 1602 delivers one type of
service, such as stock price updates, or a variety of services
such as broadcast media, news, sports, gaming, etc. Addi-
tionally, the services offered by each INSP are dynamic, that
is, services can be added or taken away at any point in time.
Thus, an INSP providing a particular type of service to a
particular individual can change over time. For example, the
client device 1620-1 is served by an INSP in near proximity
to the client device 1620-1 while the client device 1620-1 is
in a home town of the user 1, and client device 1620-1 is
served by a different INSP when the user 1 travels to a
different city. The home-town INSP will transfer requested
information and data to the new INSP, such that the infor-
mation “follows” the client device 1620-1 to the new city
making the data closer to the client device 1620-1 and easier
to access. In various embodiments, a master-server relation-
ship is established between a master INSP, which manages
the information for the client device 1620-1, and a server
INSP that interfaces directly with the client device 1620-1
under control from the master INSP. In some embodiments,
data is transferred from one ISP to another ISP as the client
device 1620-1 moves around the world to make the INSP in
better position to service client device 1620-1 be the one that
delivers these services.

The INSP 1602 includes an Application Service Provider
(ASP) 1608, which provides computer-based services to
customers over the computer network 1606. Software
offered using an ASP model is also sometimes called on-
demand software or software as a service (SaaS). A simple
form of providing access to a computer-based service, e.g.,
customer relationship management, etc., is by using a stan-
dard protocol, e.g., a hypertext transfer protocol (HT'TP),
etc. The application software resides on a vendor’s server
and is accessed by each client device 1620-1, 1620-2, and
1620-3 through a web browser using a hypertext markup
language (HTML), etc., by a special purpose client software
provided by the vendor, and/or other remote interface, e.g.,
a thin client, etc.

Services delivered over a wide geographical area often
use cloud computing. Cloud computing is a style of com-
puting in which dynamically scalable and often virtualized
resources are provided as a service over the computer
network 1606. The users 1 through 3 do not need to be an
expert in the technology infrastructure in the “cloud” that
supports them. Cloud computing is divided, in some
embodiments, in different services, such as Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). Cloud computing services often provide
common business applications online that are accessed from
a web browser, while the software and data are stored on the
servers. The term cloud is used as a metaphor for the
computer network 1606, e.g., using servers, storage and
logic, etc., based on how the computer network 1606 is
depicted in computer network diagrams and is an abstraction
for the complex infrastructure it conceals.

Further, the INSP 1602 includes a game processing pro-
vider (GPP) 1610, also sometime referred to herein as a
game processing server, which is used by the client devices
1620-1, 1620-2, and 1620-3 to play single and multiplayer
video games. Most video games played over the computer

20

25

40

45

60

65

42

network 1606 operate via a connection to a game server.
Typically, games use a dedicated server application that
collects data from the client devices 1620-1, 1620-2, and
1620-3 and distributes it to other clients that are operated by
other users. This is more efficient and effective than a
peer-to-peer arrangement, but a separate server is used to
host the server application. In some embodiments, the GPP
1610 establishes communication between the client devices
1620-1, 1620-2, and 1620-3, which exchange information
without further relying on the centralized GPP 1610.

Dedicated GPPs are servers which run independently of a
client. Such servers are usually run on dedicated hardware
located in data centers, providing more bandwidth and
dedicated processing power. Dedicated servers are a method
of hosting game servers for most PC-based multiplayer
games. Massively multiplayer online games run on dedi-
cated servers usually hosted by the software company that
owns the game title, allowing them to control and update
content.

A broadcast processing server (BPS) 1612, sometimes
referred to herein as a broadcast processing provider, dis-
tributes audio or video signals to an audience. Broadcasting
to a very narrow range of audience is sometimes called
narrowcasting. A final leg of broadcast distribution is how a
signal gets to the client devices 1620-1, 1620-2, and 1620-3,
and the signal, in some embodiments, is distributed over the
air as with a radio station or a television station to an antenna
and receiver, or through a cable television or cable radio or
“wireless cable” via the station. The computer network 1606
also brings, in various embodiments, either radio or televi-
sion signals to the client devices 1620-1, 1620-2, and
1620-3, especially with multicasting allowing the signals
and bandwidth to be shared. Historically, broadcasts are
delimited, in several embodiments, by a geographic region,
e.g., national broadcasts, regional broadcasts, etc. However,
with the proliferation of high-speed Internet, broadcasts are
not defined by geographies as content can reach almost any
country in the world.

A storage service provider (SSP) 1614 provides computer
storage space and related management services. The SSP
1614 also offers periodic backup and archiving. By offering
storage as a service, the client devices 1620-1, 1620-2, and
1620-3 use more storage compared to when storage is not
used as a service. Another major advantage is that the SSP
1614 includes backup services and the client devices 1620-
1, 1620-2, and 1620-3 will not lose data if their hard drives
fail. Further, a plurality of SSPs, in some embodiments, have
total or partial copies of the data received from the client
devices 1620-1, 1620-2, and 1620-3, allowing the client
devices 1620-1, 1620-2, and 1620-3 to access data in an
efficient way independently of where the client devices
1620-1, 1620-2, and 1620-3 are located or of types of the
clients. For example, the player accesses personal files via a
home computer, as well as via a mobile phone while the
player is on the move.

A communications provider 1616 provides connectivity
to the client devices 1620-1, 1620-2, and 1620-3. One kind
of the communications provider 1616 is an Internet service
provider (ISP), which offers access to the computer network
1606. The ISP connects the client devices 1620-1, 1620-2,
and 1620-3 using a data transmission technology appropriate
for delivering Internet Protocol datagrams, such as dial-up,
digital subscriber line (DSL), cable modem, fiber, wireless
or dedicated high-speed interconnects. The communications
provider 1616 also provides, in some embodiments, mes-
saging services, such as e-mail, instant messaging, and short
message service (SMS) texting. Another type of a commu-

US 11,360,750 B1

43

nications Provider is a network service provider (NSP),
which sells bandwidth or network access by providing direct
backbone access to the computer network 1606. Examples
of network service providers include telecommunications
companies, data carriers, wireless communications provid-
ers, Internet service providers, cable television operators
offering high-speed Internet access, etc.

A data exchange 1618 interconnects the several modules
inside INSP 602 and connects these modules to the client
devices 1620-1, 1620-2, and 1620-3 via the computer net-
work 1606. The data exchange 1618 covers, in various
embodiments, a small area where all the modules of INSP
1602 are in close proximity, or covers a large geographic
area when the different modules are geographically dis-
persed. For example, the data exchange 1602 includes a fast
Gigabit Ethernet within a cabinet of a data center, or an
intercontinental virtual LAN.

In some embodiments, communication between the server
system 404 (FIG. 4A) and the client devices 1620-1 through
1620-3 may be facilitated using wireless technologies. Such
technologies may include, for example, 5G wireless com-
munication technologies.

In one embodiment, a video game, such as the legacy
game N, as described herein, is executed either locally on a
gaming machine, a personal computer, or on a server. In
some cases, the video game is executed by one or more
servers of a data center. When the video game is executed,
some instances of the video game may be a simulation of the
video game. For example, the video game may be executed
by an environment or server that generates a simulation of
the video game. The simulation, on some embodiments, is
an instance of the video game. In other embodiments, the
simulation maybe produced by an emulator. In either case,
if the video game is represented as a simulation, that
simulation is capable of being executed to render interactive
content that can be interactively streamed, executed, and/or
controlled by user input.

It should be noted that in various embodiments, one or
more features of some embodiments described herein are
combined with one or more features of one or more of
remaining embodiments described herein.

Embodiments described in the present disclosure may be
practiced with various computer system configurations
including hand-held devices, microprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainframe computers and the like. In
one implementation, the embodiments described in the
present disclosure are practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a wire-based or wireless
network.

With the above embodiments in mind, it should be under-
stood that, in one implementation, the embodiments
described in the present disclosure employ various com-
puter-implemented operations involving data stored in com-
puter systems. These operations are those requiring physical
manipulation of physical quantities. Any of the operations
described herein that form part of the embodiments
described in the present disclosure are useful machine
operations. Some embodiments described in the present
disclosure also relate to a device or an apparatus for per-
forming these operations. The apparatus is specially con-
structed for the required purpose, or the apparatus is a
general-purpose computer selectively activated or config-
ured by a computer program stored in the computer. In
particular, in one embodiment, various general-purpose
machines are used with computer programs written in accor-

—_

0

—_

5

25

40

65

44

dance with the teachings herein, or it may be more conve-
nient to construct a more specialized apparatus to perform
the required operations.

In an implementation, some embodiments described in
the present disclosure are embodied as computer-readable
code on a computer-readable medium. The computer-read-
able medium is any data storage device that stores data,
which is thereafter read by a computer system. Examples of
the computer-readable medium include a hard drive, a
network-attached storage (NAS), a ROM, a RAM, a CD-
ROM, a CD-recordable (CD-R), a CD-rewritable (CD-RW),
a magnetic tape, an optical data storage device, a non-optical
data storage device, etc. As an example, a computer-readable
medium includes computer-readable tangible medium dis-
tributed over a network-coupled computer system so that the
computer-readable code is stored and executed in a distrib-
uted fashion.

Moreover, although some of the above-described embodi-
ments are described with respect to a gaming environment,
in some embodiments, instead of a game, other environ-
ments, e.g., a video conferencing environment, etc., is used.

Although the method operations were described in a
specific order, it should be understood that other housekeep-
ing operations may be performed in between operations, or
operations may be adjusted so that they occur at slightly
different times, or may be distributed in a system which
allows the occurrence of the processing operations at various
intervals associated with the processing, as long as the
processing of the overlay operations are performed in the
desired way.

Although the foregoing embodiments described in the
present disclosure have been described in some detail for
purposes of clarity of understanding, it will be apparent that
certain changes and modifications can be practiced within
the scope of the appended claims. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the embodiments are not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

The invention claimed is:

1. A method for facilitating a play of a legacy game,
comprising:

receiving a user input during the play of the legacy game;

determining whether one or more blocks of code for

servicing the user input are cached;

accessing one or more instructions of a legacy game code

upon determining that the one or more blocks of code
are not cached;

compiling the one or more blocks of code from the one or

more instructions of the legacy game code;

caching the one or more blocks of code; and

executing the one or more blocks of code to display a

virtual environment.

2. The method of claim 1, wherein said compiling is
performed within a game console.

3. The method of claim 1, wherein said compiling is
performed within a server system.

4. The method of claim 1, wherein each of the one or more
blocks of code includes a source register address, an opera-
tion, and a destination register address, wherein when said
each of the one or more blocks of code is executed, data for
displaying the virtual environment is accessed from the
source register address, the operation is executed on the data
that is accessed from the source register address to generate
a result, and the result is stored at the destination register
address.

US 11,360,750 B1

45

5. The method of claim 1, further comprising parsing the
legacy game code to identify the one or more instructions of
the legacy game code.

6. The method of claim 1, further comprising:

determining that instructions of the legacy game code are

compiled;

deleting the legacy game code in response to determining

that the instructions of the legacy game code are
compiled.

7. The method of claim 1, further comprising:

determining whether the legacy game code is accessed

within a pre-determined time period from a latest time
at which the legacy game code is accessed from a
legacy machine;

deleting the legacy game code in response to determining

that the legacy game code is not accessed within the
pre-determined time period from the latest time at
which the legacy game code is accessed from the
legacy machine.

8. The method of claim 1, further comprising:

generating a first validation result from the one or more

instructions upon said compiling the one or more
blocks of code;
examining one or more memory addresses associated with
the one or more instructions to determine whether the
one or more blocks of code are to be marked as invalid;

determining whether the one or more blocks of code are
to be executed;

determining whether the one or more blocks of code are

marked as invalid upon determining that the one or
more blocks of code are to be executed;

examining the one or more memory addresses to generate

a second validation result from the one or more instruc-
tions stored at the one or more memory addresses upon
determining that the one or more blocks of code are
marked as invalid;

comparing the first validation result with the second

validation result to determine whether the one or more
blocks of code are invalid;
recompiling one or more additional blocks of code asso-
ciated with the one or more instructions upon deter-
mining that the one or more blocks of code are invalid,

executing the one or more additional blocks of code to
display an additional virtual environment.

9. The method of claim 1, wherein the legacy game code
cannot be executed in a first game console that includes a
64-bit processor and can be executed in a second game
console that includes a 32-bit processor.

10. The method of claim 9, wherein the one or more
blocks can be executed in the first game console.

11. A computing device for facilitating a play of a legacy
game, comprising:

a processor configured to receive a user input during the

play of the legacy game; and

a cache coupled to the processor, and

a memory device coupled to the processor,

wherein the processor is configured to determine whether

one or more blocks of code for servicing the user input
are stored in the cache,

wherein the processor is configured to access, from the

memory device, one or more instructions of a legacy
game code upon determining that the one or more
blocks of code are not stored in the cache,

wherein the processor is configured to compile the one or

more blocks of code from the one or more instructions
of the legacy game code,

5

15

20

25

40

45

50

55

60

65

46

wherein the processor is configured to store the one or

more blocks of code in the cache, and

wherein the processor is configured to execute the one or

more blocks of code to display a virtual environment.

12. The computing device of claim 11, wherein each of
the one or more blocks of code includes a source register
address, an operation, and a destination register address,
wherein when said each of the one or more blocks of code
is executed, data for displaying the virtual environment is
accessed from the source register address, the operation is
executed on the data that is accessed from the source register
address to generate a result, and the result is stored at the
destination register address.

13. The computing device of claim 11, wherein the
processor is configured to parse the legacy game code to
identify the one or more instructions of the legacy game
code.

14. The computing device of claim 11, wherein the
processor is configured to:

generate a first validation result from the one or more

instructions upon said compiling the one or more
blocks of code;
examine one or more memory addresses associated with
the one or more instructions to determine whether the
one or more blocks of code are to be marked as invalid;

determine whether the one or more blocks of code are to
be executed;

determine whether the one or more blocks of code are

marked as invalid upon determining that the one or
more blocks of code are to be executed,

examine the one or more memory addresses to generate a

second validation result from the one or more instruc-
tions;

compare the first validation result with the second vali-

dation result to determine whether the one or more
blocks of code are invalid,
recompile one or more additional blocks of code associ-
ated with the one or more instructions upon determin-
ing that the one or more blocks of code are invalid;

execute the one or more additional blocks of code to
display an additional virtual environment.

15. The computing device of claim 11, wherein the
processor is a 64-bit processor, wherein the legacy game
code cannot be executed by the processor and can be
executed in a computing device that includes a 32-bit
processor.

16. A method comprising:

generating a first validation result from one or more

instructions of a legacy game code, wherein the one or
more instructions of the legacy game code are associ-
ated with one or more blocks of code;
examining one or more memory addresses associated with
the one or more instructions to determine whether the
one or more blocks of code are to be marked as invalid;

determining whether the one or more blocks of code are
to be executed;

determining whether the one or more blocks of code are

marked as invalid upon determining that the one or
more blocks of code are to be executed,

examining the one or more memory addresses to generate

a second validation result from the one or more instruc-
tions;

comparing the first validation result with the second

validation result to determine whether the one or more
blocks of code are invalid; and

US 11,360,750 B1
47

recompiling one or more additional blocks of code asso-
ciated with the one or more instructions upon deter-
mining that the one or more blocks of code are invalid;
and

executing the one or more additional blocks of code to 5

display a virtual environment.

17. The method of claim 16, wherein each of the one or
more additional blocks of code includes a source register
address, an operation, and a destination register address,
wherein when said each of the one or more additional blocks 10
of code is executed, data for displaying the virtual environ-
ment is accessed from the source register address, the
operation is executed on the data that is accessed from the
source register address to generate a result, and the result is
stored at the destination register address. 15

18. The method of claim 16, wherein the legacy game
code cannot be executed in a first game console that includes
a 64-bit processor and can be executed in a second game
console that includes a 32-bit processor.

19. The method of claim 18, wherein the one or more 20
blocks of code can be executed in the first game console.

20. The method of claim 16, further comprising storing
the first validation result within one or more memory
registers having the one or more blocks of code.

* * * * * 25

